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Introduction

§1. Statement of the Main Results

The main result of this paper is a Comparison Theorem (cf. Theorem A below) for
elliptic curves, which states roughly that:

The space of “polynomial functions” of degree (roughly) < d on the uni-
versal extension of an elliptic curve maps isomorphically via restriction
to the space of (set-theoretic) functions on the d-torsion points of the
universal extension.

This rough statement is essentially precise for (smooth) elliptic curves over fields of char-
acteristic zero. For elliptic curves in mixed characteristic and degenerating elliptic curves,
this statement may be made precise (i.e., the restriction map becomes an isomorphism)
if one modifies the “integral structure” on the space of polynomial functions in an appro-
priate fashion. Similarly, in the case of elliptic curves over the complex numbers, one can
ask whether or not one obtains an isometry if one puts natural archimedean metrics on
the spaces involved. In this paper, we also compute precisely what modification to the
integral structure/metrics in all of these cases (i.e., at p-adic and archimedean primes, and
for degenerating elliptic curves) is necessary to obtain an isomorphism (or something very
close to an isomorphism).

In characteristic zero, the universal extension of an elliptic curve may be regarded as
the de Rham cohomology of the elliptic curve, with coefficients in the sheaf of invertible
functions on the curve. On the other hand, the torsion points of the elliptic curve may
be regarded as a portion of the étale cohomology of the elliptic curve. Thus, one may
regard this Comparison Theorem as a sort of isomorphism between the de Rham and étale
cohomologies of the elliptic curve, given by considering functions on each of the respective
cohomology spaces. When regarded from this point of view, this Comparison Theorem may
be thought of as a sort of discrete or Arakelov-theoretic analogue of the usual comparison
theorems between de Rham and étale/singular cohomology in the complex and p-adic cases.
This analogy with the “classical” local comparison theorems can be made very precise,
and is one of the main topics of Chapter IX.

Using this point of view, we apply the Comparison Theorem to construct
a global/Arakelov-theoretic analogue for elliptic curves over number fields
of the Kodaira-Spencer morphism of a family of elliptic curves over a
geometric base.

This arithmetic Kodaira-Spencer morphism is studied in Chapter IX.
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Suppose that E is an elliptic curve over a field K of characteristic zero. Let d be a
positive integer, and η ∈ E(K) a torsion point of order not dividing d. Write

L def= OE(d · [η])

for the line bundle on E corresponding to the divisor of multiplicity d with support at the
point η. Write

E† → E

for the universal extension of the elliptic curve, i.e., the moduli space of pairs (M,∇M )
consisting of a degree zero line bundle M on E, together with a connection ∇M . Thus, E†
is an affine torsor on E under the module ωE of invariant differentials on E. In particular,
since E† is (Zariski locally over E) the spectrum of a polynomial algebra in one variable
with coefficients in the sheaf of functions on E, it makes sense to speak of the “relative
degree over E” – which we refer to in this paper as the torsorial degree – of a function on
E†. Note that (since we are in characteristic zero) the subscheme dE

† ⊆ E† of d-torsion
points of E† maps isomorphically to the subscheme dE ⊆ E of d-torsion points of E. Then
in its simplest form, the main result of this paper states the following:

Theorem Asimple. Let E be an elliptic curve over a field K of characteristic zero. Write
E† → E for its universal extension. Let d be a positive integer, and η ∈ E(K) a torsion
point whose order does not divide d. Write L def= OE(d · [η]). Then the natural map

Γ(E†,L)<d → L|
dE†

given by restricting sections of L over E† whose torsorial degree is < d to the d-torsion
points of E† is a bijection between K-vector spaces of dimension d2.

The remainder of the main theorem essentially consists of specifying precisely how one must
modify the integral structure of Γ(E†,L)<d over more general bases in order to obtain an
isomorphism at the finite and infinite primes of a number field, as well as for degenerating
elliptic curves.

To state the main theorem in its more general form, it is natural to work over a fine
noetherian log scheme Slog (cf. [Kato]). Over the base Slog, we consider what we call a log
elliptic curve

C log → Slog

(cf. Chapter III, Definition 1.1), i.e., the result of pulling back, via some morphism Slog →
(Mlog

1,0)Z, the universal log curve Clog → (Mlog

1,0)Z. Here, (Mlog

1,0)Z is the log moduli stack
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of elliptic curves over Z, equipped with its natural log structure defined by the divisor at
infinity, and C → (M1,0)Z is the unique (proper) semi-stable curve of genus 1, which we
equip with the log structure defined by the divisor in C which is the pull-back of the divisor
at infinity of (M1,0)Z.

In the general version of the main theorem, we must use line bundles – which play
the role of the line bundle L in Theorem Asimple – equipped with a metric as in [Zh] in
a neighborhood of the divisor at infinity D ⊆ S. These metrized line bundles “L” live
on a “Zhang-theoretic version” E∞,S → S∞ of C log → Slog (cf. Chapter IV, §4,5), and
are discussed in detail in Chapter V, §1. For smooth elliptic curves, these line bundles are
exactly the same as the line bundle “L” of Theorem Asimple.

Next, it turns out that at finite primes the universal extension E† → E is not quite
adequate; instead, one must modify it by multiplying the ωE-portion of E† by a factor of

d (cf. Chapter V, §2). The resulting object E
†
[d] → E is an ωE-torsor which coincides with

E† over bases on which d is invertible. In a neighborhood of the divisor at infinity, one

must consider a version of E
†
[d] which is compatible with Zhang’s theory of metrized line

bundles. This version of E
†
[d] is denoted by

E
†
∞,[d]

(cf. Chapter V, §2). For smooth elliptic curves in characteristic zero, E
†
∞,[d] is the same

as E†.
In the general form of Theorem A, we would like to consider sections of the metrized

line bundle L over E
†
∞,[d] of torsorial degree < d. It turns out, however, that if one just

considers the usual global section or push-forward functor in the naive sense, then one
does not get the desired isomorphism at finite or degenerating primes. In order to get
the desired isomorphism at such primes, one must modify the integral structure at those
primes. The resulting push-forward functor is denoted

(fS)∗(L|
E
†
∞,[d]

)<d{∞, et}

(cf. Chapter VI, Definition 1.3). For smooth elliptic curves in characteristic zero, this
push-forward is the same as the usual one. Finally, by restricting such sections of L over

E
†
∞,[d] to the d-torsion points dE

†
∞ in E

†
∞,[d], one obtains an evaluation map

Ξ{∞, et} : (fS)∗(L|
E
†
∞,[d]

)<d{∞, et} → (fS)∗(L|
(dE

†
∞)

)

(cf. Chapter V, Proposition 2.2; Chapter VI, Theorem 3.1 (1)). For smooth elliptic curves
in characteristic zero, this is the same as the map considered in Theorem Asimple.
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We are now ready to state the main theorem of this paper (cf. Chapter VIII, §0,
Theorem A):

Theorem A. (The Hodge-Arakelov Comparison Isomorphism) Let d,m ≥ 1 be
integers such that m does not divide d. Suppose that Slog is a fine noetherian log scheme,
and let

C log → Slog

be a log elliptic curve over Slog such that the divisor at infinity D ⊆ S (i.e., the pull-
back of the divisor at infinity of (M1,0)Z via the classifying morphism S → (M1,0)Z) is a
Cartier divisor on S. Also, let us assume that étale locally on the completion of S along
D, the pull-back of the Tate parameter q to this completion admits a d-th root, and that
we are given a torsion point

η ∈ E∞,S(S∞)

of order precisely m which defines line bundles Lst,η, L
ev

st,η (cf. Chapter V, §1). If d is

odd (respectively, even), then let L def= Lst,η (respectively, L def= Lev

st,η). Then:

(1) (Compatibility with Base-Change) The formation of the push-forward (cf.
Chapter VI, Definition 1.3)

(fS)∗(L|
E
†
∞,[d]

)<d{∞, et}

(along with its natural filtration by torsorial degree) commutes with base-change
(among bases Slog satisfying the hypotheses given above).

(2) (Zero Locus of the Determinant) Assume that S is Z-flat. The scheme-
theoretic zero locus of the determinant det(Ξ{∞, et}), i.e., the determinant of
the evaluation map (cf. Chapter V, Proposition 2.2; Chapter VI, Theorem 3.1,
(1))

Ξ{∞, et} : (fS)∗(L|
E
†
∞,[d]

)<d{∞, et} → (fS)∗(L|
(dE

†
∞)

)

is given by the divisor

d · [η
⋂

(dE)]
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(where dE is the kernel of multiplication by d on Ed). In fact, the divisor of poles
of the inverse morphism to Ξ{∞, et} is contained in the divisor [η

⋂
(dE)].

(3) (Analytic Torsion at the Divisor at Infinity) For each ι, there is a sequence
of elements

aι = {(aι)0, . . . , (aι)d−1}; (aι)j ≈ j2

8d

of Q≥0 · log(q), where (aι)j goes roughly (as a function of j) as j2

8d (cf. Chapter
VI, Theorem 3.1, (2)), such that the subquotients of the natural filtration on the
domain of Ξ{∞, et} admits natural isomorphisms:

(F j+1/F j)((fS)∗(L|
E
†
∞,[d]

)<d{∞, et}) −→ 1
j!

· exp(−(aι)j) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j
E

(where τE is the dual of ωE) for j = 0, . . . , d−1. Moreover, the sections of L|
E
†
∞,[d]

that realize these bijections have q-expansions in a neighborhood of infinity that
are given explicitly in Chapter V, Theorem 4.8.

(4) (Integrality Properties at the Infinite Prime) Suppose that D = ∅, and S

is of finite type over C. Let us then write L, Ξ, dE
†, E

†
[d] for L, Ξ{∞, et}, dE

†
∞,

E
†
∞,[d]. Then one may equip L with a (smooth, i.e., C∞) metric | ∼ |L whose

curvature is translation-invariant on the fibers of E → S. Moreover, such
a metric is unique up to multiplication by a (smooth) positive function on S(C).
Then | ∼ |L defines a metric on the vector bundle (fS)∗(L|

dE†) (i.e., the range

of Ξ), namely, the L2-metric for “L-valued functions on dE
†” (where we assume

that the total mass of dE
† is 1). Since Ξ is an isomorphism, this metric thus

induces a metric on (fS)∗(L|
E
†
[d]

)<d (i.e., the domain of Ξ), which we denote by

|| ∼ ||et

and refer to as the étale metric. On the other hand, by using the canonical real

analytic splitting of E
†
[d](C) → E(C) (i.e., the unique splitting which is a contin-

uous homomorphism), we may split sections of (fS)∗(L|
E
†
[d]

)<d into components

which are real analytic sections of L ⊗ τ⊗r
E (where r < d) over E(C). Since τE

gets a natural metric by square integration over E, these components have natural

8



L2-norms determined by integrating their | ∼ |2L over the fibers of E(C) → S(C).
This defines what we refer to as the de Rham metric

|| ∼ ||DR

on (fS)∗(L|
E
†
[d]

)<d. The relationship between the étale and de Rham metrics may

be described using three “models”:

(A.) The Hermite Model: This model states that if we fix r < d,
and let d → ∞, then over any compact subset of S(C), the étale metric
|| ∼ ||et on F r((fS)∗(L|

E
†
[d]

)<d) converges (up to a factor ≤ eπ+r, ≥ 1)

to the metric || ∼ ||DR, as well as to a certain metric “|| ∼ ||HMd
”

defined by considering Hermite polynomials scaled by a factor of
(constant)·

√
d in the derivatives of the theta functions ∈ (fS)∗(L|E) =

F 1((fS)∗(L|
E
†
[d]

)<d).

(B.) The Legendre Model: This model states (roughly) that over
any compact subset of S(C), a certain average – which we denote
|| ∼ ||w,μa

– of translates of the étale metric || ∼ ||et on (fS)∗(L|
E
†
[d]

)<d

is equal (provided d ≥ 25), up to a factor of (constant)d, to the de
Rham metric || ∼ ||DR, as well as to a certain metric “|| ∼ ||Tch” de-
fined by considering discrete Tchebycheff polynomials scaled by
a factor of d in the derivatives of the theta functions ∈ (fS)∗(L|E) =
F 1((fS)∗(L|

E
†
[d]

)<d). These discrete Tchebycheff polynomials are dis-

crete versions of the Legendre polynomials, and in fact, if we let d → ∞
with the said scaling by d, then the discrete Tchebycheff polynomials
converge uniformly to the Legendre polynomials.

(C.) The Binomial Model: This model involves the explicit q-expan-
sions (where we write E = Gm/qZ, and q is a holomorphic function
which is defined, at least locally, on S(C)) referred to in (3) above, which
are essentially binomial coefficient polynomials (scaled by 1) in
the derivatives of the theta functions ∈ (fS)∗(L|E) = F 1((fS)∗(L|

E
†
[d]

)<d).

If we divide these functions by appropriate powers of q, then the norm
|| ∼ ||qCG for which these functions divided by powers of q are or-
thonormal satisfies the following property: If d ≥ 12, and Im(τ) ≥
200{log2(d) + n · log(d) + n · log(n)} (where q = exp(2πiτ)), then:

n−1 · e−32d · || ∼ ||qCG ≤ || ∼ ||et ≤ e4d · || ∼ ||qCG
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Here, the factor of n−1 that appears is the exact archimedean ana-
logue of the poles that appeared at finite primes in (2) above.

Finally, for each of these three models, the combinatorial/arithmetic portion of the
analytic torsion (i.e., the portion not arising from letting the elliptic curve E degenerate
– cf. (3) above for the portion arising from degeneration of the elliptic curve) induced on
(F r+1/F r)((fS)∗(L|

E
†
[d]

)<d) by the metrics || ∼ ||DR; || ∼ ||HMd
; || ∼ ||Tch; || ∼ ||w,μa

;

|| ∼ ||qCG (in their respective domains of applicability) as r → d, goes (modulo factors of
the order (constant)d) as

≈ (r!)−1 ≈ (d!)−1

which is precisely what you would expect by applying the product formula to the com-
putation of the “analytic torsion” in the finite prime case, which consists of a factor
of precisely (r!)−1 (cf. Chapter V, Theorem 3.1; Chapter VI, Theorem 4.1; Chapter VII,
Proposition 3.4).

In particular, Theorem A, (3), tells us that the necessary modification to the integral
structure of the degree j portion of the push-forward at the p-adic and degenerating primes
is a factor of

1
j!

· q−j2

8d

The factor q
−j2

8d involving the q-parameter is of fundamental importance in the theory of
this paper. Because (as a function of j) this factor varies like a “Gaussian exp(−x2)” and
gives rise to poles (relative to the usual push-forward) in the modified push-forward that
we consider in Theorem A, we refer to the modification in integral structure arising from
this factor as the Gaussian poles. The factor of 1

8d in the exponent may be justified by the
following calculation: On the one hand, if one thinks in terms of degrees of vector bundles
on (M1,0)C, the degree of the usual push-forward goes roughly as

d−1∑
j=0

deg(τ⊗j
E ) =

d−1∑
j=0

j · deg(τE) ≈ 1
2
d2 · deg(τE) = −1

2
d2 · 1

12
log(q) = −d2

24
· log(q)

where “log(q)” is a symbol that stands for the element in Pic((M1,0)C) defined by the
divisor at infinity. (It turns out that the contribution to the degree by the line bundle L is
negligible.) On the other hand, the sum of the degrees resulting from the Gaussian poles
is

d−1∑
j=0

j2

8d
· log(q) ≈ 1

3
d3 · 1

8d
· log(q) =

d2

24
· log(q)
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In other words, the factor of 1
8d is just enough to make the total degree 0. Since the

restriction of L to the torsion points is (essentially) a “torsion line bundle” (i.e., some
tensor power of it is trivial), the degree of the range of the evaluation map is zero – i.e., the
factor of 1

8d is just enough to make the degrees of the domain and range of the evaluation
map of Theorem A equal (which is natural, since we want this evaluation map to be an
isomorphism). In fact,

It turns out that the proof of the scheme-theoretic portion of Theorem
A in Chapter VI, §3,4, is based on precisely this sort of “summation of
degrees” argument.

In this proof, however, in order to get an exact isomorphism, it is necessary to compute
all the degrees involved precisely. This computation requires a substantial amount of work
(involving, for instance, the theory of [Zh]) and is carried out in Chapters IV, V, VI.

On the other hand, the key point of the archimedean portion of Theorem A is the
comparison of the étale and de Rham metrics || ∼ ||et, || ∼ ||DR. Unfortunately, we are
unable to prove a simple sharp result that they always coincide. Instead, we choose three
natural “domains of investigation” – which we refer to as models – where we compare these
two metrics using a particular system of functions which are well-adapted to the domain
of investigation in question. One of the most important features of these three models is
that they each have natural scaling factors associated to them. The three models, along
with their natural scaling factors, and natural domains of applicability are as follows:

Hermite Model (scaling factor = d
1
2 ) : nondegenerating E, fixed r < d

Legendre Model (scaling factor = d) : nondegenerating E, varying r < d

Binomial Model (scaling factor = 1) : degenerating E

It is interesting to observe that the exponents appearing in these scaling factors, i.e.,
0, 1

2 , 1, which we refer to as slopes, are precisely the same as the slopes that appear when
one considers the action of Frobenius on the crystalline cohomology of an elliptic curve
at a finite prime – cf. the discussions at the end of Chapter VII, §3, 6, for more on this
analogy.

Finally, we apply Theorem A to construct an arithmetic analogue of the Kodaira-
Spencer morphism, as follows. In the following discussion, we write

ΠS
def= π1((Slog)Q, s)

for the algebraic fundamental group of the base Slog. Thus, if S
def= Spec(OK), where OK is

the ring of integers of a number field K, then ΠS = Gal(K/K) is the absolute Galois group
of K. In this discussion, we make the technical assumption that if d is even, then ΠS acts
trivially on the 2-torsion of the elliptic curve in question. Then it follows from Mumford’s
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theory of algebraic theta functions that ΠS acts naturally (up to poles annihilated by 4)
on the range of the Comparison Isomorphism of Theorem A. Thus, Theorem A tells us
that, by transport of structure, we get an action of ΠS on the domain of the Comparison
Isomorphism which is (roughly) integral at all primes (finite and infinite). Since this
domain is equipped with a natural Hodge filtration, we thus get a morphism

κarith
E : ΠS → Filt(HDR)(S)

where Filt(HDR)(S) is a certain flag variety of filtrations of the domain of the Comparison
Isomorphism, which we denote by HDR (since it is a sort of de Rham cohomology). This
morphism, which we refer to as the arithmetic Kodaira-Spencer morphism of the given
family of elliptic curves, has remarkable integrality properties (cf. the discussion preceding
Chapter IX, Definition 3.4). In Chapter IX, §1,2, we explain in detail how this arithmetic
Kodaira-Spencer morphism is a very precise analogue of the classical Kodaira-Spencer
morphism for families of complex and p-adic elliptic curves (cf. also [Katz2]). In the
construction of all of these Kodaira-Spencer morphisms, the main idea consists, as depicted
in the following diagram:

Kodaira-Spencer morphism:

motion in base-space �→ induced deformation of Hodge filtration

of the idea that the Kodaira-Spencer morphism is the map which associates to a “motion”
in the base-space of a family of elliptic curves, the deformation in the Hodge filtration of
the de Rham cohomology of the elliptic curve induced by the motion. We refer to Chapter
IX for more details.

§2. Technical Roots: the Work of Mumford and Zhang

Let K be an algebraically closed field of characteristic 0. Let E be an elliptic curve
over K. Let L be the line bundle of Theorem Asimple. Then instead of considering sections
of L over E†, one can consider sections of L over E. Such sections may be restricted to
L|

dE . Moreover, by the theory of algebraic theta functions (cf. [Mumf1,2,3]), the restriction
L|

dE of L to the d-torsion points dE ⊆ E has a canonical trivialization L|
dE

∼= L|e⊗K O
dE

(where e ∈ E(K) is the zero element) — at least when d is odd. Thus, by composing the
restriction morphism with this trivialization, we obtain a morphism (as in [Mumf1,2,3]):

Γ(E,L) ↪→ L|
dE

∼= L|e ⊗K O
dE

i.e., one may think of sections of L over E as functions on dE. These functions are
Mumford’s “algebraic theta functions.”
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Now let us observe that dimK(Γ(E,L)) = d, while dimK(L|e ⊗K O
dE) = d2. That is

to say, Mumford’s theory only addresses a fraction (more precisely: 1
d) of the functions in

L|e ⊗K O
dE . Thus, it is natural to ask:

Is there a natural extension of Mumford’s theory that allows one to give
meaning to all the functions of L|e ⊗K O

dE as some sort of “global”
sections of L?

Theorem Asimple provides a natural, affirmative answer to this question: i.e., it states these
functions may be interpreted naturally as the sections of L over the universal extension
E† of torsorial degree < d.

In more classical terms, to consider the universal extension amounts essentially to
considering the derivatives of (classical) theta functions (cf., e.g., [Katz1], Appendix C).
For instance, if one takes K = C, and writes

θτ (z) def=
∑
n∈Z

eπiτ ·n2 · e2πiz·n

for the “standard theta function” (where z ∈ C, τ ∈ H
def= {w ∈ C | Im(w) > 0}), then

up to the operation of taking the Fourier expansion, this theta function is essentially a
“Gaussian eπiτ ·n2

,” and its derivatives P ( ∂
∂z ) · θτ (z) (where P (−) is a polynomial with

coefficients in C) are given by polynomial multiples of (which are equivalent to derivatives
of) the Gaussian:

P (2πi · n) · eπiτ ·n2

Just as theta functions are the “fundamental functions on an elliptic curve” (more precisely:
generate the space of sections of L over E), these derivatives are the “fundamental functions
on the universal extension of the elliptic curve” (more precisely: generate the space of
sections of L over E†). This point of view is discussed in more detail in Chapter III, §5, 6,
7; Chapter VII, §6. As one knows from elementary analysis, the most natural polynomial
multiples/derivatives of a Gaussian are those given by the Hermite polynomials. It is thus
natural to expect that the Hermite polynomials should appear naturally in the portion
of the theory of this paper concerning the behavior of the comparison isomorphism at
archimedean primes. This intuition is made rigorous in the theory of Chapters IX, X. In
fact, more generally:

The essential model that permeates the theory of this paper is that of
the Gaussian and its derivatives. This model may be seen especially in
the “Gaussian poles,” as well as in the “Hermite model” at the infinite
prime (cf. §1).
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In the classical theory over C, the most basic derivative of the theta function is the so-
called Weierstrass zeta function (cf. [Katz1], Appendix C). It should thus not be surprising
to the reader that various generalizations of the Weierstrass zeta function – which we refer
to as Schottky-Weierstrass zeta functions (cf. Chapter III, §6, 7) – play a fundamental role
in this paper.

So far, in the above discussion, we concentrated on smooth elliptic curves. On the other
hand, when one wishes to consider degenerating elliptic curves, Zhang has constructed a
theory of metrized line bundles on such degenerating elliptic curves (cf. [Zh]). In this
theory, one can consider the curvatures of such metrized line bundles, as well as intersec-
tion numbers between two metrized line bundles in a fashion entirely similar to Arakelov
intersection theory. Using Zhang’s theory of metrized line bundles, it is not difficult to ex-
tend Mumford’s theory of algebraic theta functions in a natural fashion to metrized ample
line bundles on degenerating elliptic curves (cf., e.g., Chapter IV, §5, for more details).
Unfortunately, however, just as Mumford’s theory only addresses sections over the original
elliptic curve (as opposed to over the universal extension, as discussed above), Zhang’s
theory also only deals with the theory of metrized line bundles over the original (degener-
ating) elliptic curve. Thus, it is natural to ask whether one can generalize Theorem Asimple

to the case of degenerating elliptic curves in such a way that the resulting generalization
of the portion of Γ(E†,L) arising from sections over E is compatible with Zhang’s theory
of metrized line bundles (and their sections) over E. In other words, it is natural to ask:

Can one “de Rham-ify” the theory of [Zh], so that it addresses the “met-
ric” behavior of sections of L not only over E, but over E†, as well?

An affirmative answer to this question is given by the theory of Gaussian poles, or “analytic
torsion at the divisor at infinity” – cf. Theorem A, (3) in §1; Chapters V, VI.

Another way to view the relation to Zhang’s theory is the following. One consequence
of the theory of [Zh] is the construction of a natural “metric” (or integral structure) on the
space ωE of invariant differentials on a (degenerating) elliptic curve. If we regard ωE as a
line bundle on the compactified moduli space of elliptic curves, then Zhang’s “admissible
metric” on ωE essentially amounts to the (metrized) line bundle ωE(− 1

12 ·∞) (where ∞ is
the divisor at infinity of the moduli space), i.e., the line bundle ωE with integral structure
at infinity modified by tensoring with O(− 1

12 · ∞). Moreover, it follows from Zhang’s
theory that there is a natural trivialization

ωE(− 1
12

· ∞) ∼= O

of this metrized line bundle over the moduli space. The 12-th tensor power of this trivializa-
tion is the cuspidal modular form usually denoted “Δ” ([KM], Chapter 8, §8.1). Similarly,
Theorem A, (3), states that by allowing “Gaussian poles” in the sections of Γ(E†,L), one
gets a natural isomorphism between Γ(E†,L) (with this modified integral structure) and
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a vector bundle which is trivial (in characteristic zero) over some finite log étale covering
of the compactified moduli (log) stack of elliptic curves. That is to say,

One may regard the theory of Gaussian poles/analytic torsion at the
divisor at infinity in Theorem A, (3), as a sort of “GL2-analogue” of
the isomorphism of line bundles (i.e., Gm-torsors) ωE(− 1

12 ·∞) ∼= O —
or, alternatively, a GL2-analogue of the modular form Δ.

Note: The reason that we mention “GL2” is that the vector bundle on the “étale side”
of the comparison isomorphism of Theorem A arises naturally (at least in characteristic
zero) from a representation (defined by the Galois action on the d-torsion points) of the
fundamental group of the moduli stack of elliptic curves into GL2, whereas the isomorphism
ωE(− 1

12 ·∞) ∼= O naturally corresponds to an abelian representation (i.e., a representation
into Gm which is, in fact, of order 12) of this fundamental group – cf. [KM], Chapter 8,
§8.1.

§3. Conceptual Roots: the Search for a Global Hodge Theory

§3.1. From Absolute Differentiation to Comparison Isomorphisms

Let K be either a number field (i.e., a finite extension of Q) or a function field in
one variable over some coefficient field k (which we assume to be algebraically closed in
K). Let S be the unique one-dimensional regular scheme whose closed points s correspond
naturally (via Zariski localization of S at s) to the set of all discrete valuations of K (where
in the function field case we assume that the elements of k× are units for the valuations).
We shall call S the complete model of K. Of course, in the number field case, it is natural
to “formally append” to S the set of archimedean valuations of K.

Let

E → S

be a one-dimensional, generically proper semi-abelian scheme over S, i.e., EK
def= E ⊗S K

is an elliptic curve over K with semi-stable reduction everywhere. Then E defines a
classifying morphism

α : S → (M1,0)Z

to the compactified moduli stack of elliptic curves over Z. It is natural to endow S with
the log structure arising from the set of closed points at which E → S has bad reduction.
Then α extends to a morphism αlog : Slog → (Mlog

1,0)Z in the logarithmic category.
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Now, in the function field case, if we differentiate α, we obtain the Kodaira-Spencer
morphism of E → S:

κE : ω⊗2
E

∼= α∗Ω
(Mlog

1,0)Z
→ ΩSlog/k

(where ωE is the restriction to the identity section of E → S of the relative cotangent
bundle of E over S). Since ωE is naturally the pull-back via α of an ample line bundle
on (M1,0)Z, and κE is typically nonzero (for instance, it is always nonzero if K is of
characteristic zero and E → S is not isotrivial (i.e., trivial after restriction to a finite
covering of S)), the existence of the Kodaira-Spencer morphism κE gives rise to a bound
on the height of E → S by the degree of ΩSlog/k. The thrust of a family of conjectures
due to Vojta (cf. [Lang], [Vojta]) is that this bound (or at least, a bound roughly similar
to this bound) in the geometric case (i.e., the case when K is a function field) also holds
in the “arithmetic case” (i.e., the case when K is a number field). Thus,

In order to prove Vojta’s Conjecture in the arithmetic case, it is natural
to attempt to construct some sort of arithmetic analogue of the Kodaira-
Spencer morphism.

Indeed, this point of view of approaching the verification of some inequality by first trying
to construct “the theory underlying the inequality” is reminiscent of the approach to
proving the Weil Conjectures (which may be thought of as inequalities concerning the
number of rational points of varieties over finite fields) by attempting to construct a “Weil
cohomology theory” for varieties over finite fields which has enough “good properties” to
allow a natural proof of the Weil Conjectures.

Of course, if one tries to construct any sort of naive analogue of the Kodaira-Spencer
morphism in the arithmetic case, one immediately runs into a multitude of fundamental
obstacles. In some sense, these obstacles revolve around the fact that the ring of rational
integers Z does not admit “a field of coefficients” F1 ⊆ Z. If such a field of absolute
constants existed, then one could consider “absolute differentials ΩZ/F1 ,” or

“ΩOK/F1”

Moreover, since moduli spaces tend to be rather absolute and fundamental objects, it
is natural to imagine that if one had a field of absolute constants “F1,” then (M1,0)Z
should descend naturally to an object (M1,0)F1 over F1, so that one could differentiate
the classifying morphism α : S → (M1,0)Z in the arithmetic case, as well, to obtain an
arithmetic Kodaira-Spencer morphism

“κE : ω⊗2
E

∼= α∗Ω
(Mlog

1,0)F1
→ ΩSlog/F1”

and then use this arithmetic Kodaira-Spencer morphism to prove Vojta’s Conjecture con-
cerning the heights of elliptic curves. (Note: In this case, Vojta’s Conjecture is also referred
to as “Szpiro’s Conjecture.”)
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Unfortunately, this sort of “absolute field of constants F1” does not, of course, exist
in any naive sense. Thus, it is natural to look for a more indirect, abstract approach. In
the geometric case, when k = C, the algebraic curve S defines a Riemann surface San. Let
us write US ⊆ S for the open subobject where the log structure of Slog is trivial. Then
the first singular cohomology module of the fibers of E → S naturally forms a local system

H1
sing(E/S,Z)

on the Riemann surface Uan
S . One the other hand, the first de Rham cohomology module

of the fibers of E → S forms a rank two vector bundle

H1
DR(E/S,OE)

on Uan
S . This de Rham cohomology admits a Hodge filtration, which may be thought of as

a natural exact sequence:

0 → ωE → H1
DR(E/S,OE) → τE → 0

Moreover, this vector bundle H1
DR(E/S,OE) on Uan

S admits a connection ∇DR — called the
Gauss-Manin connection — which allows one to differentiate sections of H1

DR(E/S,OE).
Using this connection ∇DR to differentiate the Hodge filtration gives rise to a natural
morphism

ΘSlog/k → τ⊗2
E

(where ΘSlog/k is the dual to ΩSlog/k) which is dual to the Kodaira-Spencer morphism κE .
Thus,

Another way to think of our search for “F1” or “a notion of absolute
differentiation” is as the search for an arithmetic analogue of the Gauss-
Manin connection ∇DR on the de Rham cohomology H1

DR(E/S,OE).

This is the first step towards raising our search for an arithmetic Kodaira-Spencer mor-
phism to a more abstract level.

Next, let us recall that the de Rham isomorphism defines a natural isomorphism

H1
DR(E/S,OE) ∼= H1

sing(E/S,Z) ⊗Z OUan
S

(in the complex analytic category) over Uan
S . Moreover, the sections of H1

DR(E/S,OE)
defined (via this isomorphism) by sections of H1

sing(E/S,Z) are horizontal for ∇DR. Thus,
we conclude that:
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To construct the Gauss-Manin connection ∇DR, it is enough to know
the de Rham isomorphism between de Rham and singular cohomology.

The de Rham isomorphism is a special case of the general notion of a Comparison Iso-
morphism between de Rham and singular/étale cohomology. In the last few decades, this
sort of Comparison Isomorphism has been constructed over p-adic bases, as well (cf., e.g.,
[Falt1,2], [Hyodo]). In the arithmetic case, we would like to construct some sort of analogue
of the Kodaira-Spencer morphism over S which also has natural integrality properties at
the archimedean places, as well (since we would like to use it conclude inequalities concern-
ing the height of the elliptic curve EK). Put another way, we would like to construct some
sort of arithmetic Kodaira-Spencer morphism in the context of Arakelov theory. Thus, in
summary, the above discussion suggests that:

In order to construct this sort of arithmetic Kodaira-Spencer morphism,
a natural approach is to attempt to construct some sort of Comparison
Isomorphism in the “Arakelov theater,” analogous to the well-
known complex and p-adic Comparison Isomorphisms between de Rham
and étale/singular cohomology.

The construction of such an Arakelov-theoretic Comparison Theorem is the main goal of
this paper. To a certain extent, this goal is achieved by Theorem A (cf. §1). For a detailed
explanation of the sense in which the Comparison Isomorphism of Theorem A is analogous
to the well-known complex and p-adic Comparison Isomorphisms, we refer to Chapter
IX. Unfortunately, however, for various technical reasons, the arithmetic Kodaira-Spencer
morphism that naturally arises from Theorem A is not well enough understood at the
time of writing to allow its application to a proof of Vojta’s Conjectures (for more on these
“technical reasons,” cf. §5.1 below; Chapter IX, Example 3.5, and the Remark following
Example 3.5). In the remainder of the present §3, we would like to explain in detail how we
were led to Theorem A as a global, Arakelov-theoretic analogue of the well-known “local
Comparison Isomorphisms.”

§3.2. A Function-Theoretic Comparison Isomorphism

In §3.1, we saw that one way to think about absolute differentiation or an abso-
lute/arithmetic Kodaira-Spencer morphism is to regard such objects as natural conse-
quences of a “global Hodge theory,” or Comparison Isomorphism between the de Rham
and étale cohomologies of an elliptic curve. The question then arises:

Just what form should such a Global Comparison Isomorphism — i.e.,
in suggestive notation

H1
DR(E) ⊗ ?? ∼= H1

et(E) ⊗ ??

— take?
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For instance, over C, such a comparison isomorphism exists naturally over C, i.e., when
one takes ?? = C. In the p-adic case, one must introduce rings of p-adic periods such as
BDR, Bcrys (cf., e.g., [Falt2]) in order to obtain such an isomorphism. Thus, we would like
to know over if there is some sort of natural “ring of global periods” over which we may
expect to obtain our global comparison isomorphism.

In fact, in the comparison isomorphism obtained in this paper (cf. §1, Theorem A),
unlike the situation over complex and p-adic bases, we do not work over some “global
ring of periods.” Instead, the situation is somewhat more complicated. Roughly speaking,
what we end up doing is the following:

In the Hodge-Arakelov Comparison Isomorphism, we obtain a compar-
ison isomorphism between the de Rham and étale cohomologies of an
elliptic curve by considering functions on the de Rham and étale co-
homologies of the elliptic curve and then constructing an isomorphism
between the two resulting function spaces which is (essentially) an
isometry with respect to natural metrics on these function spaces at all
the primes of the base.

Indeed, for instance over a number field, the de Rham cohomology and étale cohomology are
finite modules over very different sorts of rings (i.e., the ring of integers of the number field
in the de Rham case; the profinite completion of Z, or one of its quotients in the étale case),
and it is difficult to imagine the existence of a natural “global arithmetic ring” containing
both of these two types of rings. (Note here that unlike the case with Shimura varieties,
the adèles are not a natural choice here for a number of reasons. Indeed, to consider the
adèles here roughly amounts to simply forming the direct product of the various local (i.e.,
complex and p-adic) comparison isomorphisms, which is not very interesting in the sense
that such a simple direct product does not result in any natural global structures.) Thus:

The idea here is to abandon the hope of obtaining a global linear iso-
morphism between the de Rham and étale cohomology modules, and
instead to look for an isomorphism (as mentioned above) between the
corresponding function spaces which does not necessarily arise from a
linear morphism between modules.

In the present §, we explain how we were led to look for such a “function-theoretic com-
parison isomorphism,” while in §3.3 below, we examine the meaning of the nonlinearity of
this sort of comparison isomorphism.

In order to understand the motivating circumstances that naturally lead to the in-
troduction of this sort of function-theoretic point of view, we must first return to the
discussion of the case over the complexes in §3.1 above. Thus, in the following discussion,
we use the notation of the discussion of the complex case in §3.1. One more indirect way
to think about the existence of the Kodaira-Spencer morphism is the following. Recall the
exact sequence
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0 → ωE → H1
DR(E/S,OE) → τE → 0

which in fact exists naturally over San. The Gauss-Manin connection ∇DR acts on the
middle term of this exact sequence (as a connection with logarithmic poles at the points
of bad reduction), but does not preserve the image of ωE . One important consequence of
this fact is that:

(If one imposes certain “natural logarithmic conditions” on the splitting
at points of bad reduction, then) this exact sequence does not split.

Indeed, if this exact sequence split, then one could use this splitting to obtain a connection
on ωE induced by ∇DR. Moreover, if the “natural logarithmic conditions” are satisfied,
it would follow that this connection on ωE has zero monodromy at the points of bad
reduction, i.e., that the connection is regular over all of San. But since ωE is the pull-back
to S of an ample line bundle on (M1,0)Z, it follows (so long as E → S is not isotrivial)
that deg(ωE) �= 0, hence that the line bundle ωE cannot admit an everywhere regular
connection. That is, we obtain a contradiction.

Another (essentially equivalent) way to think about the relationship between the fact
that the above exact sequence does not split and the existence of the Kodaira-Spencer
morphism is the following. If one considers the ω⊗2

E -torsor of splittings of the above
exact sequence (together with the “natural logarithmic conditions” at the points of bad
reduction), we obtain a class

η ∈ H1
c (S, ω⊗2

E )

where the subscript “c” stands for “cohomology with compact support.” (The reason that
we get a class with compact support is because of the “natural logarithmic conditions” at
the points of bad reduction.) On the other hand, if we apply the functor H1

c (−) to the
Kodaira-Spencer morphism, we obtain a morphism

H1
c (S, ω⊗2

E ) → H1
c (S,ΩSlog/k) = H1

c (S,ΩS/k) ∼= k

Moreover, the image of η under this morphism can easily be shown to be the element of
H1

c (S,ΩS/k) ∼= k which is the degree of the classifying morphism α : S → (M1,0)C, i.e.,
deg(α) ∈ Z ⊆ C = k, which is nonzero (so long as E → S is not isotrivial). This implies
that η is nonzero.

Thus, in summary,

An indirect way to “witness the existence of the Kodaira-Spencer mor-
phism” is to observe that the above exact sequence does not split, i.e.,
that the ω⊗2

E -torsor of splittings of this sequence is nontrivial.
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This point of view is discussed in more detail in [Mzk2], Introduction, §2.3. Also, we
observe that this nonsplitting of the above exact sequence may also be regarded as a sort
of “stability of the (vector bundle plus connection) pair” (H1

DR(E/S,OE),∇DR). This
type of stability of a bundle equipped with connection is referred to as “crys-stability” in
[Mzk2] — cf. [Mzk2], Introduction, §1.3; [Mzk2], Chapter I, for more details.

Fig. 1: The split case.

Now let us return to the arithmetic case. In this case, S = Spec(OK) (where OK is
the ring of integers of a number field K). Moreover, we have a natural exact sequence of
OK-modules:

0 → ωE → H1
DR(E/S,OE) → τE → 0

which extends naturally to an exact sequence of OK-modules with Hermitian metrics at
the infinite primes, i.e., an exact sequence of arithmetic vector bundles on S (where S
denotes the formal union of S with the set of infinite primes of K) in the sense of Arakelov
theory. Then one can consider whether or not this exact sequence of arithmetic vector
bundles splits. Moreover, just as in the complex case, one can think of this issue as the
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issue of whether or not a certain Arakelov-theoretic ω⊗2
E -torsor splits. (The notion and

basic properties of torsors in Arakelov-theory are discussed in Chapter I.) Thus,

One way to regard the issue of constructing an arithmetic Kodaira-
Spencer morphism is as the issue of constructing a theory that proves
that/explains why this Arakelov-theoretic ω⊗2

E -torsor does not split.

Indeed, the nonsplitting of this torsor is very closely related to the Conjectures of Vojta
and Szpiro — in fact, the existence of (for instance, an infinite number of) counterexamples
to these conjectures would imply (in an infinite number of cases) the splitting of this torsor
(cf. Chapter I, Theorem 2.4; Chapter I, §4).
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Fig. 2: The non-split case.

From a more elementary point of view, the nonsplitting of this torsor may be thought
of in the following fashion. First of all, an arithmetic vector bundle over S may be thought
of as an (OK -) lattice in a real or complex vector space. Thus, for instance, in the case
K = Q, one may think of H1

DR(E/S,OE) as a lattice in R2, while the arithmetic line
bundles ωE and τE may be thought of as lattices in R. In the case of arithmetic line
bundles, to say that the degree of the arithmetic line bundle (cf. Chapter I, §1) is large

22



(respectively, small) amounts to saying that the points of the lattice are rather densely
(respectively, sparsely) distributed. Note that since ωE is the pull-back to S of an ample
line bundle (M1,0)Z, its degree tends to be rather large. Thus, to say that the torsor in
question splits is to say that H1

DR(E/S,OE) looks rather like the lattice of Fig. 1, i.e., it
is dense in one direction and sparse in another (roughly orthogonal) direction. We would
like to show that H1

DR(E/S,OE) looks more like the lattice in Fig. 2, i.e.:

We would like to show that the lattice corresponding to H1
DR(E/S,OE)

is roughly equidistributed in all directions.

Since we are thinking about comparison isomorphisms, it is thus tempting to think of the
comparison isomorphism as something which guarantees that the “distribution of matter”
in the lattice H1

DR(E/S,OE) is as even in all directions as the “distribution of matter” in
the étale cohomology of E. Also, it is natural to think of the “distribution of matter issues”
involving the étale cohomology, or torsion points, of E as being related to the action of
Galois. (The action of Galois on the torsion points is discussed in Chapter II.) Thus, in
summary:

It is natural to expect that the global comparison isomorphism should
be some sort of equivalence between “distributions of matter” in the de
Rham and étale cohomologies of an elliptic curve.

Typically, in analytic number theory, probability theory, and other field of mathematics
where “distributions of matter” must be measured precisely, it is customary to measure
them by thinking about functions — i.e., so-called “test functions” — (and the resulting
function spaces) on the spaces where these distributions of matter occur. It is for this
reason that the author was led to the conclusion that:

The proper formulation for a global comparison isomorphism should be
some sort of isometric (for metrics at all the primes of a number field)
isomorphism between spaces of functions on the de Rham and étale co-
homologies of an elliptic curve.

This is precisely what is obtained in Theorem A.

§3.3. The Meaning of Nonlinearity

In §3.2 above, we saw that one of the central ideas of this paper is that to obtain
a “global Hodge theory,” one must sacrifice linearity = additivity, and instead look for
isometric isomorphisms between spaces of functions on the de Rham and étale cohomology.
Put another way, this approach amounts to abandoning the idea that the de Rham and
étale cohomologies are modules, and instead thinking of them as (nonlinear) geometric
objects. Thus, one appropriate name for this approach might be “geometric motive theory.”
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This approach contrasts sharply with typical approaches to the “theory of motives” or to
“global Hodge theories” which tend to revolve around additivity/linearization, and involve
such “linear” techniques as the introduction of derived categories that contain motives. In
some sense, since we set out to develop a global Hodge theory in the context of Arakelov
theory, the nonlinearity of the Comparison Isomorphism of Theorem A is perhaps not
so surprising: Indeed, many objects in Arakelov theory which are analogues of “linear”
objects in usual scheme theory become “nonlinear” when treated in the context of Arakelov
theory. Perhaps the most basic example of this phenomenon is the fact that in Arakelov
theory, the space of global sections of an arithmetic line bundle is not closed under addition.
This makes it difficult and unnatural (if not impossible) to do homological algebra (e.g.,
involving derived categories) in the context of Arakelov theory.

Another way to think about the nonlinearity of the Hodge-Arakelov Comparison Iso-
morphism is that it is natural considering that the fundamental algebraic object that
encodes the “symmetries of the Gaussian,” namely, the Heisenberg algebra — i.e., the Lie
algebra generated by 1, x, y, and the relations [x, y] = 1, [x, 1] = [y, 1] = 0 (the étale
counterpart of which is the theta groups of Mumford) — is closely related to nonlinear
geometries. In the field of noncommutative geometry, the object that represents these
symmetries is known as the noncommutative torus. Since the Gaussian and its derivatives
lie at the technical heart at the theory of this paper, it is thus not surprising that the
nonabelian nature of the symmetries of the Gaussian should manifest itself in the theory.
In fact, in the portion of the theory of this paper at archimedean primes, it turns out that
the Comparison Isomorphism in some sense amounts to a function-theoretic splitting of
the exact sequence 0 → d · Z → Z → Z/d · Z → 0, i.e., a function-theoretic version of a
bijection

(Z/d · Z) × (d · Z) ∼= Z

This sort of splitting is somewhat reminiscent of the “splitting” inherent in regarding Z as
being some sort of “polynomial algebra over F1.” Moreover, this archimedean portion of
the theory is also (not surprisingly) closely related to the derivatives of the Gaussian and
the symmetries encoded in the Heisenberg algebra. Thus, in summary:

It is as if the symmetries/twist inherent in the inclusion “F1 ⊆ Z” are
precisely the symmetries/twist encoded in the noncommutative torus (of
noncommutative geometry).

We refer to the discussion of Chapter VIII, §0, for more details on this point of view.

§3.4. Hodge Theory at Finite Resolution

So far, we have discussed the idea that the appropriate way to think about Comparison
Isomorphisms is to regard them as (isometric) isomorphisms between spaces of functions
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on the de Rham and étale cohomologies of an elliptic curve. The question then arises:
How does one define such a natural isomorphism? The key idea here is the following:

Comparison Isomorphisms should be defined as evaluation maps, given
by evaluating functions on the universal extension of an elliptic curve —
which is a sort of “H1

DR(E,O×E ),” i.e., a kind of de Rham cohomology
of the elliptic curve — at the torsion points of the universal extension
(which may naturally be identified with the étale cohomology of the el-
liptic curve).

In fact, one of the main observations that led to the development of the theory of this
paper is the following:

The classical Comparison Isomorphisms over complex and p-adic bases
may be formulated precisely as evaluation maps of certain functions on
the universal extension at the torsion points (or the “singular cohomol-
ogy analogue of torsion points”) of the universal extension.

This key observation is discussed in detail in Chapter IX, §1, 2. In the complex case, it
amounts to an essentially trivial reformulation of the classical theory. Perhaps the best way
to summarize this reformulation is to state that the subspace of functions on the “singular
cohomology analogue of torsion points” arising from the theta functions on the elliptic
curve is itself a sort of “function-theoretic” representation of the Hodge filtration induced
(by the de Rham isomorphism) on the singular cohomology with complex coefficients
of an elliptic curve. In fact, this observation more than any other played an essential
role in convincing the author that (roughly speaking) “theta functions naturally define
the Comparison Isomorphism” (hence that any global Comparison Isomorphism should
involve theta functions). In the p-adic case, this “key observation” amounts to what is
usually referred to as the p-adic period map (cf., e.g., [Coln], [Colz1,2], [Font], [Wint]; the
beginning of Chapter IX, §2, of the present paper) of elliptic curves (or abelian varieties).

Thus, in summary, the complex, p-adic, and Hodge-Arakelov Comparison Isomor-
phisms may all be formulated along very similar lines, i.e., as evaluation maps of functions
on the universal extension at the torsion points of the universal extension. Of course, the
difference between the Hodge-Arakelov Comparison Isomorphism and its local (i.e., com-
plex and p-adic) counterparts is that unlike in the local case, where the spaces of torsion
points involved are “completed at some prime,” in the Hodge-Arakelov case, we work with
a discrete set of torsion points. It is for this reason that we find it natural to think of
the theory of the present paper as a “discretization” of the well-known local comparison
isomorphisms. Another way that one might think of the theory of the present paper is as
a “Hodge theory at finite resolution” (where we use the term “resolution” as in discussions
of the number of “pixels” (i.e., “picture elements, dots”) of a computer screen).

At this point, the reader might feel motivated to pose the following question:
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If the Hodge-Arakelov Comparison Isomorphism is indeed a comparison
isomorphism analogous to the complex and p-adic comparison isomor-
phisms, then what sorts of “global periods” does it give rise to?

For instance, in the case of the complex comparison isomorphism, the most basic period
is the period of the Tate motive, i.e., of H1 of Gm, namely, 2πi. In the p-adic case, the
corresponding period is the copy of Zp(1) that sits naturally inside Bcrys. The analogous
“period” resulting from the theory of the present paper, then, is the following: Let U be the
standard multiplicative coordinate on Gm. Then U − 1 forms a section of some ample line
bundle on Gm, hence may be thought of as a sort of “theta function” (cf. especially, the
Schottky uniformization of an elliptic curve, as in [Mumf4], §5). Then, roughly speaking,
the “discretized Hodge theory” of the present paper amounts essentially — from the point
of view of periods — to thinking of the period “2πi” as

lim
n→∞

n · (U − 1)|U=exp(2πi/n)

i.e., the evaluation of a theta function at an n-torsion point, for some large n. For the
elliptic curve analogue (at archimedean primes) of this representation of 2πi, we refer
especially to Chapter VII, §5, 6, of the present paper.

In fact, another way to interpret the theory of the present paper is the following.
First, let us observe that the classical complex comparison isomorphism (i.e., the de Rham
isomorphism) is centered around “differentiation” and “integration,” i.e., calculus on the
elliptic curve. Moreover, in some sense, the most fundamental aspect of calculus as opposed
to algebraic geometry on the elliptic curve is the use of real analytic functions on the
elliptic curve. In the present context, however, we wish to keep everything “arithmetic”
and “global” over a number field. Thus, instead of performing calculus on the underlying
real analytic manifold of a (complex) elliptic curve, we approximate this classical sort of
calculus by performing calculus on a finite (but “large”) set of torsion points of the elliptic
curve. That is to say:

We regard the set of torsion points as an approximation of the under-
lying real analytic manifold of an elliptic curve.

Indeed, this notion of “discrete torsion calculus” is one of the key ideas of this paper.
For instance, the universal extension of a complex elliptic curve has a canonical real analytic
splitting (cf. Chapter III, Definition 3.2), which is fundamental to the Hodge theory of the
elliptic curve (cf., e.g., [Mzk2], Introduction, §0.7, 0.8). Since this splitting passes through
the torsion points of the universal extension (and, in fact, is equal to the closure of these
torsion points in the complex topology), it is thus natural to regard the torsion points
of the universal extension as a “discrete torsion calculus approximation” to the canonical
real analytic splitting (cf. Remark 1 following Chapter III, Definition 3.2). This “discrete
torsion calculus” point of view may also be seen in the use of the operator “δ” in Chapter
III, §6,7 (cf. also Chapter V, §4), as well as in the discussion of the “discrete Tchebycheff
polynomials” in Chapter VII, §3.
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§3.5. Relationship to Ordinary Frobenius Liftings and Anabelian Varieties

Finally, before proceeding, we present one more approach to thinking about “absolute
differentiation over F1.” Perhaps the most naive approach to defining the derivative of a
number n ∈ Z (cf. [Ihara]) is to fix a prime number p, and then to compare n with its
Teichmüller representative [n]p ∈ Zp. The idea here is that Teichmüller representatives
should somehow represent something analogous to a “field of constants” inside Zp. Thus,
we obtain a correspondence

p �→ 1
p
(n − [n]p)

Unfortunately, if one starts from this naive point of view, it seems to be very difficult to
prove interesting global results concerning this correspondence, much less to apply it to
proving interesting results in diophantine geometry.

Thus, it is natural to attempt to recast this naive approach in a form that is more
amenable to globalization. To do this, let us first note that to consider Teichmüller repre-
sentatives is very closely related to considering the natural Frobenius morphism

ΦA : A → A

on the ring of Witt vectors A
def= W (Fp). In fact, the Teichmüller representatives in A are

precisely the elements which satisfy the equation:

ΦA(a) = ap

Put another way, if a is a unit, then it may be thought of as an element ∈ Gm(A). Moreover,
Gm is equipped with its own natural Frobenius action ΦGm , given by U �→ Up (where U
is the standard multiplicative coordinate on Gm). Thus, the Teichmüller representatives
are given by those elements of a ∈ Gm(A) such that

ΦA(a) = ΦGm(a)

In fact, this sort of situation where one has a natural Frobenius action on a p-adic (for-
mal) scheme, and one considers natural p-adic liftings of points on this scheme modulo
p which are characterized by the property that they are taken to their Frobenius (i.e.,
ΦA) conjugates by the given action of Frobenius occurs elsewhere in arithmetic geometry.
Perhaps the most well-known example of this situation (after Gm) is the Serre-Tate theory
of liftings of ordinary abelian varieties. Recently, this theory has been generalized to the
case of moduli of hyperbolic curves ([Mzk1,2]). We refer to the Introductions of [Mzk1,2]
for more on this phenomenon. In the theory of [Mzk1,2], this sort of natural Frobenius
action on a p-adic (formal) scheme is referred to as an ordinary Frobenius lifting.
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The theory of ordinary Frobenius liftings is itself a special (and, in some sense, the
simplest) case of p-adic Hodge theory. Thus, in summary, from this point of view, the
naive approach discussed above (involving the correspondence p �→ 1

p (n − [n]p)) may be
thought of as the approach given by “looking at the p-adic Hodge theory of Gm at each
prime p.” In particular, the relationship between the approach of this paper and the above
naive approach may be thought of as the difference between discretizing the various local
p-adic Hodge theories into a global Arakelov-theoretic theory (as discussed in §3.1 – 3.4
above) and looking at the full completed p-adic Hodge theories individually.

In fact, there is another important difference between the approach of this paper
and the above naive approach — namely, the difference between Gm and Mlog

1,0 (the log
moduli stack of elliptic curves). That is to say, unlike the example discussed above, which
is essentially concerned with rational points of Gm, the theory of this paper concerns
“absolute differentiation for points of Mlog

1,0.” At the present time, the author does not
know of an analogous approach to “globally discretizing” the local Hodge theories of Gm

(i.e., of doing for Gm what is done for Mlog

1,0 in this paper). Also, it is interesting to observe
that, unlike many theories for elliptic curves which generalize in a fairly straightforward
manner to abelian varieties of higher dimension, it is not so clear how to generalize the
theory of this paper to higher-dimensional abelian varieties (cf. §5.2 below). Thus, it
is tempting to conjecture that perhaps the existence of the theory of the present paper
in the case of Mlog

1,0 is somehow related to the anabelian nature of Mlog

1,0 (cf. [Mzk3],
[IN]). That is to say, one central feature of anabelian varieties is a certain “extraordinary
rigidity” exhibited by their p-adic Hodge theory (cf. [Groth]; the Introduction to [Mzk3]).
In particular, it is tempting to suspect that this sort of rigidity or coherence is what allows
one to discretize the various local Hodge theories into a coherent global theory. Another
interesting observation in this direction is that the theta groups that play an essential role
in this paper are essentially the same as/intimately related to the quotient

π1(E − pt.)/[π1(E − pt.), [π1(E − pt.), π1(E − pt.)]]

of the fundamental group π1(E−pt.) of an elliptic curve with one point removed (which is
itself an anabelian variety). This sort of quotient of the fundamental group plays a central
role in [Mzk3].

Finally, we remark that one point of view related to the discussion of the preceding
paragraph is the following: One fundamental obstacle to “differentiating an integer n ∈
Z (or Q-rational point of Gm) over F1” is that the residue fields Fp at the different
points of Spec(Z) differ, thus making it difficult to compare the value of n at distinct
points of Spec(Z). On the other hand, the theory of the present paper — which involves
differentiating Z-valued points of the moduli stack of log elliptic curves Mlog

1,0 — gets around
this problem effectively by taking the set of d-torsion points as one’s absolute constants
that do not vary even as the residue field varies. Note that relative to the discussion of
§3.4, this set of torsion points should be regarded as a discrete analogue/approximation to
the underlying real analytic manifold (which, of course, remains constant) of a family of
complex elliptic curves.
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§4. Guide to the Text

In this §, we give brief summaries of the contents of the various chapters of this paper.

In Chapter I, we discuss the notion of a “torsor” in Arakelov theory, give various
criteria for when such torsors split, and finally, explain how such torsors arise naturally
in arithmetic geometry. In Chapter II, we consider the issue of the extent to which the
Galois action on the torsion points of an elliptic curve over a number field is transitive. We
remark that neither of these two chapters is logically necessary for the proof of the main
results of this paper. (Thus, the reader who is only interested in the proof of Theorem A (of
§1), for instance, may skip these two chapters.) The reason for the inclusion of these two
chapters is that they help to clarify the background of the Hodge-Arakelov Comparison
Isomorphism, as explained in the discussion of §3.2 above.

The bulk of the remainder of the text is devoted to the proof of the Hodge-Arakelov
Comparison Isomorphism. In Chapter III, we review basic facts concerning the universal
extension of an elliptic curve, and especially its relation to the Schottky uniformization of
an elliptic curve. In Chapter IV, we review Mumford’s theory of algebraic theta functions
([Mumf1,2,3]) and Zhang’s theory of metrized line bundles ([Zh]) and derive various conse-
quences of these theories as they relate to the theory of the present paper. In Chapter V,
we construct the evaluation map that gives rise to the Hodge-Arakelov Comparison Isomor-
phism and verify various basic properties of this evaluation map. Finally, in Chapter VI, we
prove the scheme-theoretic portion of the Comparison Isomorphism by means of (among
other things) a rather involved computation of degrees (cf. the discussion immediately
following the statement of Theorem A in §1).

The next two chapters (VII and VIII) are devoted to the theory of the Comparison
Isomorphism at archimedean primes. In Chapter VII, we discuss various natural systems of
orthogonal functions, which provide natural coordinate systems in the spaces of functions
that appear in the study of the Comparison Isomorphism. Many of these systems of
orthogonal functions are closely related to the well-known classical systems of Legendre
and Hermite. Finally, in Chapter VIII, we apply the theory of Chapter VII to complete
the proof of the archimedean portion of the Hodge-Arakelov Comparison Isomorphism.

In the final chapter of the text, Chapter IX, we explain how the Hodge-Arakelov Com-
parison Isomorphism may be applied to construct an arithmetic Kodaira-Spencer morphism
for elliptic curves over number fields. We also explain how the Hodge-Arakelov Comparison
Isomorphism and the arithmetic Kodaira-Spencer morphism derived from it are related to
more classical comparison isomorphisms and Kodaira-Spencer-type morphisms over com-
plex and p-adic bases.
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§5. Future Directions

§5.1. Gaussian Poles and the Theta Convolution

In some sense, the most fundamental outstanding problem left unsolved in this paper
is the following:

How can one get rid of the Gaussian poles (cf. §1)?

For instance, if one could get rid of the Gaussian poles in Theorem A, there would be
substantial hope of applying Theorem A to Vojta’s Conjectures (cf. Chapter IX, Example
3.5, and the Remark following Example 3.5). For instance, if we take m = 2d in Theorem
A (so that the metrized line bundle L is symmetric), then one gets an action of {±1} on
the domain and range of the Comparison Isomorphism (which is itself compatible with this
action). If one then decomposes the domain without Gaussian poles into eigenspaces for
this action (and uses the fact that everything is compatible with the action of the theta
groups involved), then one obtains natural ω⊗2j

E -torsors (where j ≥ 1 is an integer) that
split if and only if these eigenspaces of the domain split into direct sums of nonpositive
powers of ωE . Thus, if one could somehow get the Galois (i.e., ΠS) action resulting
from the Hodge-Arakelov Comparison Isomorphism to exist without the Gaussian poles,
then violations to Vojta’s Conjecture would result in a complete splitting of the domain
(without Gaussian poles) into nonpositive powers of ωE . Since, moreover, this Galois
action is not likely to preserve the Hodge filtration, one would then most likely obtain
morphisms from various powers of ωE into strictly smaller powers of ωE , which would
result in a contradiction (since ωE tends to have positive degree).

The above sketch of an argument (i.e., that one might be able to apply Theorem
A to Vojta’s Conjectures if only one could get rid of the Gaussian poles) provides, in
the opinion of the author, strong motivation for investigating the issue of whether or not
one can somehow eliminate the Gaussian poles from Theorem A. Moreover, the following
argument indicates how this might be done: As discussed in §2, in some sense, one may
regard the theory of this paper as the theory of the Gaussian and its derivatives. The
classical example of the theory of the Gaussian and its derivatives is the theory of Hermite
functions. The Hermite functions, which are various derivatives of the Gaussian, are not
themselves polynomials, but rather of the form: (polynomial) · (Gaussian). Thus, it is
natural to divide the Hermite functions by the Gaussian, which then gives us polynomials
which are called the Hermite polynomials. In the theory of this paper, the original Gaussian
corresponds (relative to taking the Fourier expansion) to the algebraic theta functions of
Mumford (i.e., before we consider derivatives); the “unwanted” Gaussian that remains in
the Hermite functions corresponds to the Gaussian poles. Moreover, since multiplication
and division after taking the Fourier expansion correspond to convolution, it is natural
to imagine that the image of the “domain without Gaussian poles” of the Comparison
Isomorphism (of Theorem A) should correspond to those functions on the torsion points
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that are in the image of (the morphism given by) convolution with the (original) theta
function — which we refer to as the “theta convolution” for short. Thus, it is natural to
conjecture that:

By studying the theta convolution, one might be able to construct a Ga-
lois action like the one needed in the argument above, i.e., a “Galois
action without Gaussian poles.”

In [STC], we study this theta convolution, and obtain, in particular, a theta-convoluted
comparison isomorphism, which has the property that, in a neighborhood of the divisor
at infinity, when one works with an étale (i.e., isomorphic to Z/dZ) Lagrangian subgroup,
and a multiplicative (i.e., isomorphic to μd) restriction subgroup, then the Gaussian poles
vanish, as desired (cf. [STC], especially Remark 1 following Theorem 10.1, for more de-
tails). In fact, this point of view is already implicit in the present paper in the theory of
the metrics “|| ∼ ||w,μa

” of Chapter VIII, §1,2. Even in the case of the theta-convoluted
comparison isomorphism, however, the Gaussian poles fail to vanish (in a neighborhood
of the divisor at infinity) if either the restriction subgroup fails to be multiplicative or the
Lagrangian subgroup fails to be étale.

In these cases, it is tempting to suspect that (at least at p-adic primes) perhaps by
working over some sort of base like “Bcrys” — over which μd and Z/d ·Z become isomor-
phic — these technical problems involving étale restriction subgroups and multiplicative
Lagrangian subgroups may be overcome. In fact, this point of view is already implicit
in the discussion of Chapter IX, §2, of the present paper. It is the hope of the author
to discuss these issues in a sequel to the present paper and [STC] devoted to the p-adic
aspects of the theta convolution (cf. the Introduction to [STC]).

§5.2. Higher Dimensional Abelian Varieties and Hyperbolic Curves

Once results such as Theorem A (of §1) have been established for elliptic curves, it is
natural to attempt to generalize such results to higher dimensional abelian varieties and
hyperbolic curves. Unfortunately, however, even in the case of the abelian varieties, where
one expects the generalization to be relatively straightforward, one immediately runs into
a number of problems. For instance, if one considers sections of an ample line bundle L
over the universal extension of an abelian variety of dimension g, the dimension over the
base field of the space of global sections of torsorial degree < d is:

(
d − 1 + g

g

)
· dg < d2g

(where we assume that the dimension of the space of global sections of L over the abelian
variety itself is equal to dg) if g > 1. Thus, the naive generalization of Theorem Asimple

cannot possibly hold (i.e., since the two spaces between which one must construct an
isomorphism have different dimensions). Nevertheless, it is the hope of the author that
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someday this sort of technical problem may be overcome, and that the theory of this paper
may be generalized to arbitrary abelian varieties. If such a generalization could be realized,
it would be interesting if, for instance, just as the various models (Hermite, Legendre,
Binomial) that occur in the archimedean theory of the present paper correspond naturally
to the possible slopes of the action of Frobenius (on the first crystalline cohomology module
of an elliptic curve) at finite primes (cf. the discussion of this phenomenon in §1), it were
the case that the corresponding models in the archimedean theory for arbitrary abelian
varieties correspond to the possible Newton polygons of the action of Frobenius (on the first
crystalline cohomology module of an abelian variety of the dimension under consideration)
at finite primes.

Another natural direction in which to attempt to generalize the theory of this paper
would be to extend it to a global/Arakelov-theoretic Hodge theory of hyperbolic curves.
Indeed, the “complex Hodge theory of hyperbolic curves,” which revolves around the Köbe
uniformization of (the Riemann surfaces corresponding to) such curves by the upper half-
plane, has already been extended to the p-adic case ([Mzk1,2]). Moreover, the theory of
[Mzk1,2] may also be regarded as the “hyperbolic curve analogue” of Serre-Tate theory.
Thus, it is natural to attempt to construct a “global Arakelov version” of [Mzk1,2], just as
the theory of the present paper in some sense constitutes a globalization of the Serre-Tate
theory/p-adic Hodge theory of elliptic curves (cf. Chapter IX, §2).
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Chapter I: Torsors in Arakelov Theory

§0. Introduction

In this Chapter, after reviewing various well-known facts from Arakelov theory, we
discuss the notion of a torsor in the Arakelov context and prove various results (Theorems
2.4, 3.2; Corollary 2.5) concerning the existence of splittings of such torsors. Finally, in §4,
we discuss how such torsors arise naturally in arithmetic geometry, and, more specifically,
how they relate to the main goal of this paper, which is to understand the structure of the
arithmetic torsor defined by the universal extension of an elliptic curve.

§1. Arakelov Theory in Geometric Dimension Zero

In this §, we review basic facts concerning Arakelov theory in the case of geometric di-
mension zero. Our references will be [GS] and [Szp]. Arakelov theory provides a convenient
language for expressing many well-known results in elementary number theory.

We begin by introducing notation. Let K be a number field, i.e., a finite extension
of Q. Let OK be its ring of integers. Let d

def= [K : Q] (i.e., the degree of K over Q).
Let r1 (respectively, r2) be the number of real (respectively, complex) places of K (so
d = r1 + 2r2). Let Σ be the set of embeddings K ↪→ C. If σ ∈ Σ, we write σ for the
embedding obtained by composing σ with complex conjugation. Also, if σ ∈ Σ, we shall
write εσ for [Kσ : R]. Let DK ∈ Z>0 be the absolute value of the discriminant of K over
Q.

Definition 1.1. We shall call (cf. [GS], §2.4.1) a pair M = (M,h) an arithmetic vector
bundle over K (of rank r) if M if a finite, flat OK-module (such that dimK(M⊗OK

K) = r),
and h = {hσ}σ∈Σ is a set of Hermitian metrics hσ on Mσ

def= M ⊗OK
Kσ such that the

metric hσ is the complex conjugate of the metric hσ. We shall refer to an arithmetic vector
bundle of rank one as an arithmetic line bundle.

Example 1.2. The OK-module OK equipped with the metrics given by the absolute
value | |σ defined by σ ∈ Σ defines a natural arithmetic line bundle. We shall denote this
arithmetic line bundle by OK .

Example 1.3. Consider the OK-module ωK
def= HomZ(OK ,Z) (cf. [Szp], §1.3). Observe

that the trace defines a natural element Tr ∈ ωK . Moreover, there exists a unique metric

34



on (ωK)σ such that |Tr|σ = εσ. We shall denote the resulting arithmetic line bundle by
ωK .

Note that if L and M are arithmetic vector bundles, then one can form various new
arithmetic vector bundles as follows: L⊗OK

M ; HomOK
(M,L); M

∨ def= HomOK
(M,OK);

M
∗ def= HomOK

(M,ωK); (for i ∈ Z≥0) ∧i M . (Note that our notation differs from that of
[GS].) All have naturally defined metrics, which we leave to the reader to make explicit. If
L, M , and P are arithmetic line bundles, then we define an exact sequence of arithmetic
line bundles

0 → L → M → P → 0

to be an exact sequence of the underlying OK-modules such that: at each σ, (i) the metric
on Lσ is induced by restricting the metric of Mσ; (ii) the metric on Pσ is induced by the
metric on the orthogonal complement to Lσ in Mσ.

Let M be an arithmetic vector bundle. Then we would like to define a number of
invariants associated to M . Let us write

H0(M) def= {m ∈ M such that |m|σ ≤ 1 ∀σ ∈ Σ}

and

h0(M) def= log(#H0(M)) ∈ R

Next, we could like to define the degree deg(M ) of M . First of all, if M is an arithmetic
line bundle, then for any m ∈ M , we define (cf. [GS], §2.4.1)

deg(M) def= log(#(M/O · m)) −
∑
σ∈Σ

log(|m|σ) ∈ R

This real number is easily seen (by means of the product formula of elementary number
theory) to be independent of the choice of m ∈ M . Note that if M is an arithmetic line
bundle, and h0(M) > 0 (so H0(M) has at least one nonzero element), then it follows from
the definition of H0(M) that deg(M ) ≥ 0.

More generally, for M of arbitrary rank r, we let deg(M) def= deg(∧r M). If L is
an arithmetic line bundle, then deg(M ⊗ L) = deg(M) + r · deg(L). Moreover, deg(−) is
additive on exact sequences. Finally, we would like to define the Euler characteristic χ(M)
of M :

χ(M) def= deg(M) + r · χ(OK)
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where

χ(OK) def= r2 · log(2) − 1
2

log(DK)

(In [Szp], §1.3, a different, but equivalent definition of χ(−) is given in terms of logarithms
of volumes.) The invariant χ(−) is additive on exact sequences.

Proposition 1.4. We have: deg(ωK) = −2 · χ(OK) = log(DK) − 2r2 · log(2).

Proof. See [Szp], Lemma 1.4. ©

Next, we would like to review the main result (Theorem 2) of [GS].

Theorem 1.5. There exists a universal constant C ∈ R>0 which is independent of K
such that the following inequalities hold:

−C · (nd) · (log(nd) + 1) ≤ h0(M) − h0(M
∗
) − χ(M) ≤ C · (nd) · (log(nd) + 1)

for any arithmetic vector bundle M of rank n > 0 over a number field K.

Proof. This is essentially Theorem 2 of [GS]. It is easy to see (using the fact that N ! ≤ NN

and Stirling’s formula (see, e.g., [Ahlf], Chapter 5, §2.5 – cf. also Chapter VII, Lemma 1.5)
to estimate the size of the Γ function) that the number “C(r1, r2, n)” of loc. cit. can be
bounded uniformly (with respect to n, M , K) by C · (nd) · (log(nd)+1), for some universal
C ∈ R>0. ©

§2. Definition and First Properties of Torsors

Next, we would like to define the notion of an arithmetic torsor over an arithmetic
vector bundle. Thus, let M be an arithmetic vector bundle over K.

Definition 2.1. We shall call a pair T = (T, s) an arithmetic torsor over M , or, simply,
an M -torsor if T has the structure of an M -torsor T → Spec(OK) on Spec(OK), and
s = {sσ}σ∈Σ is a collection of rational points sσ ∈ T (Kσ) such that sσ is the complex
conjugate of sσ. We shall refer to the {sσ} as the approximands of the arithmetic torsor
T .
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Let T be an M -torsor. Then we shall be especially interested in the issue of when T
“splits,” or “is trivial.”

Definition 2.2. We shall say that T splits if there exists a t ∈ T (OK) such that for each
σ ∈ Σ, the element t−sσ ∈ Mσ satisfies |t−sσ | ≤ 1. In this case, t will be called a splitting
of T , and we shall write t ∈ T (OK). If ε > 0 and |t − sσ| ≤ ε for all σ ∈ Σ, then we shall
call t a splitting of proximity ε, or, simply, an ε-splitting. If t − sσ = 0 for all σ ∈ Σ, then
we shall say that the torsor T is trivial.

Example 2.3. Suppose that 0 → M → P → OK → 0 is an exact sequence of arithmetic
vector bundles (over K). Then the splittings OK → P of this exact sequence form an M -
torsor T in a natural way: Indeed, if we forget about metrics, then the splittings OK → P
form an M -torsor T → Spec(OK). Thus, it remains to define the “splittings at the infinite
prime,” i.e., the sσ. We take sσ to be the splitting defined by the orthogonal complement
to Mσ in Pσ. This gives us an M -torsor T . In fact, it is easy to show that every M -torsor
arises in this way. Moreover, T is trivial if and only if P ∼= M ⊕OK .

Next, we would like to use Theorem 1.5 above to show that if L is a line bundle of
large degree, then every L-torsor splits.

Theorem 2.4. There exists a universal constant Cd ∈ R depending only on d = [K : Q]
with the following property: Let L be an arithmetic line bundle over K such that the
inequality

deg(L) ≥ log(DK) + Cd

is satisfied. Then any L-torsor T splits.

Proof. Let λ ∈ R>0. Let us write Z(λ) for the arithmetic line bundle over Q defined
as follows: The underlying Z-module of Z(λ) is Z, while the norm of 1 ∈ Z is given by
|1| = λ−1. Thus, if λ is much greater than 1, Z(λ) will have lots of global sections (i.e., its
h0 will be large). Since the underlying Z-module of Z(λ) is Z, one can regard H0(Z(λ))
as a (finite) subset of Z. Let Nλ be the product of all the positive elements of this subset.
Thus, Nλ ∈ Z, and every nonzero element of H0(Z(λ)) divides Nλ.

Next, let C be the universal constant of Theorem 1.5. Let C′d
def= 2C(d+1)(1+log(d+

1)) + 1 ∈ R. Let λ be a real number > 1 and such that log(λ) ≥ C′d. Let Cd be a positive
real number such that Cd ≥ C′d and Cd > log(Nλ). In the following, we would like to show
that this Cd has the property stated in the theorem.

Now let L be an arithmetic line bundle over K satisfying the inequality in the state-
ment of the theorem. Then we wish to define a new arithmetic line bundle Lλ over K as
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follows: The underlying OK-module Lλ will be the OK -submodule Nλ ·L ⊆ L. The metric
on (Lλ)σ = Lσ is defined by taking λ times the metric on Lσ. Thus, we have an inclusion
φ : Lλ ↪→ L which is “globally integral” in the sense that the following two conditions are
satisfied: (i) α ∈ Lλ maps to an element of L; (ii) α ∈ (Lλ)σ with absolute value ≤ 1 maps
to an element of Lσ with absolute value ≤ 1. It is then immediate from Definition 2.1 that
every L-torsor T arises from an Lλ-torsor Tλ by pushing forward via φ.

Now let us consider the L-torsor T arising (cf. Example 2.3) from an exact sequence

0 → L → M → OK → 0

By the remark at the end of the last paragraph, it follows that this exact sequence can
always be obtained by pushing forward (via φ) an exact sequence

0 → Lλ → Mλ → OK → 0

Next, let us “push-forward” this exact sequence via “Spec(OK) → Spec(Z)” so as to obtain
an exact sequence of arithmetic vector bundles over Q. Then, let us pull-back this exact
sequence via the morphism of Z-modules Z ↪→ OK given by the structure of OK as a
Z-algebra. This gives us an exact sequence

0 → L
′
λ → P

′
λ → Z → 0

Finally, let us tensor this exact sequence with Z(λ). This gives us an exact sequence

0 → L
′
λ(λ) → P

′
λ(λ) → Z(λ) → 0

We would like to use Theorem 1.5 to compute the number of global sections of the arith-
metic vector bundles in this exact sequence.

First, let us observe that

χ(L
′
λ(λ)) = −log(Nλ) + χ(L)

= −log(Nλ) + deg(L) + χ(OK)

In particular, deg(L
′
λ(λ)) = −log(Nλ) + deg(L). Thus,

deg(HomZ(L
′
λ(λ),Z)) = log(Nλ) − deg(L) + log(DK) − 2r2 · log(2)

≤ log(Nλ) + log(DK) − deg(L)

< Cd + log(DK) − deg(L)
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(where the last inequality follows from the fact that we chose Cd to be > log(Nλ)). It
thus follows that HomZ(L

′
λ(λ),Z)) is an arithmetic line bundle over K whose degree is

negative. Thus, by [Szp], Lemma 1.1, this arithmetic line bundle has no global sections.
Similarly, since χ(Z(λ)) = deg(Z(λ)) = log(λ), we conclude that HomZ(Z(λ),Z) has no
global sections. It thus follows that HomZ(P

′
λ(λ),Z) also has no global sections.

Now we are ready to apply Theorem 1.5. We thus obtain that

h0(P
′
λ(λ)) ≥ χ(P

′
λ(λ)) − C(d + 1)(1 + log(d + 1))

> log(λ) + χ(L
′
λ(λ)) − C′d + C(d + 1)(1 + log(d + 1))

≥ (log(λ) − C′d) + χ(L
′
λ(λ)) + Cd(1 + log(d))

≥ h0(L
′
λ(λ))

Thus, there exists a section s ∈ H0(P
′
λ(λ)) whose image s′ in Z(λ) is nonzero. Thus, s′ ∈ Z

divides Nλ. Then, unraveling all of the complicated definitions reveals that if we divide the
section s by the integer s′, we obtain a section s′′ ∈ M whose image in OK is 1. Thus, it
remains to analyze s′′ at the infinite primes. Let us denote (for σ ∈ Σ) by δσ (respectively,
δ′′σ) the orthogonal projection of s (respectively, s′′) to (L

′
λ(λ))σ (respectively, Lσ). Then

since s is “integral at σ,” it follows that

|δσ|2σ ≤ |δσ|2σ + λ−2 · (s′)2 ≤ 1

On the other hand, |δ′′σ |σ = (s′)−1 · |δσ|σ. Thus, it follows immediately that |δ′′σ |σ ≤ 1.
In other words, s′′ defines a splitting of the torsor T . This completes the proof of the
theorem. ©

Remark. Theorem 2.4 is the number-theoretic analogue of the following well-known fact
concerning line bundles on algebraic curves: If X is a smooth, geometrically connected,
proper curve over a field k, and L is a line bundle on X such that deg(L) ≥ deg(ωX/k)+1,
then H1(X,L) = 0.

Corollary 2.5. There exists a universal constant Cd ∈ R depending only on d = [K : Q]
with the following property: Let E be an arithmetic vector bundle of rank r over a number
field K which is equipped with a filtration of arithmetic vector bundles

0 = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Er−1 ⊆ Er = E

such that for all i = 0, . . . , r, the subquotients Li
def= Ei/Ei−1 are arithmetic line bundles

which satisfy the inequality
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deg(Li) ≥ log(DK) + d · log(r) + Cd

Then any E-torsor T splits.

Proof. Given an E-torsor, we may assume that the E-torsor arises (by push-forward)
from some torsor over E(r−1) def= E ⊗Z Z(r−1). By applying Theorem 2.4 to the push-
forward of this E(r−1)-torsor via the surjection E(r−1) → Lr(r−1) – where we note that
by assumption,

deg(Lr(r−1)) ≥ log(DK) + CD

so it is alright to apply Theorem 2.4 to Lr(r−1) – we obtain a splitting of the resulting
Lr(r−1)-torsor. Thus, to split the E(r−1)-torsor in question, it remains to split a certain
Er−1(r−1)-torsor. Continuing in this fashion (i.e., pushing forward the Er−1(r−1)-torsor
via the surjection Er−1(r−1) → Lr−1(r−1), splitting the resulting Lr−1(r−1)-torsor by
Theorem 2.4, etc.) we see that relative to the E(r−1)-torsor in question, we obtain a
splitting sE of the underlying E(r−1)-torsor whose distance at an archimedean prime σ
from the approximand (cf. Definition 2.1) at σ is

≤ 1 + 1 + . . . + 1 = r

(i.e., a total of r “1”’s), where the r “1”’s arise from the distance from the approximands of
the torsors over L1(r−1), L2(r−1), . . . , Lr(r−1) that we split in the process of constructing
sE . On the other hand, to say that sE has distance ≤ r from the approximands of the
E(r−1)-torsor in question means precisely (by the definition of the “(r−1)”) that if we
regard sE as a splitting of the original E-torsor, the distance of sE at an archimedean
place σ from the approximand (of the original E-torsor) at σ is ≤ 1, i.e., that sE defines
a splitting of the original E-torsor, as desired. ©

§3. Splittings with Bounded Denominators

Unfortunately, Theorem 2.4 is only useful when considering collections of torsors all
of which are defined over number fields of bounded degree (over Q). Ideally, however,
we would like to be able to consider collections of torsors over various number fields of
arbitrarily large degree. In this case, we are not able to obtain as sharp a result as
Theorem 2.4, and instead must settle for splittings with denominators, as follows:

Let M be an arithmetic vector bundle over K. Let T = (T, s) be an M -torsor. Thus,
T is an M -torsor. Since Spec(OK) is affine, there exists a splitting of T , i.e., an OK -
isomorphism α : T ∼= M . Now let t ∈ T (K) = TK(K) be a splitting of the MK -torsor TK
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(where the subscript K denotes “⊗OK
K”). Then we may define the ideal of denominators

of t as follows:

It
def= {a ∈ OK | a · αK(t) ∈ M}

(where αK : TK
∼= MK). Since, for any m ∈ M , we have a ·αK(t) ∈ M ⇐⇒ a ·αK(t+m) ∈

M , it follows that It does not depend on the choice of α. Note that It will always be a
nonzero ideal in OK . Also, let us write

Den(t) def= log(OK/It) +
∑

σ

max{0, log(|t − sσ|σ)}

where the sum ranges over all σ ∈ Σ. Note that t defines an (integral) splitting (cf.
Definition 2.2) ∈ T (OK) if and only if Den(t) = 0.

Definition 3.1. For t ∈ TK , we shall refer to the ideal It ⊆ OK as the ideal of de-
nominators of t. Morever, we define the size of the denominators of t to be the number
Den(t) ∈ R≥0. If λ ∈ R, then we shall call a section t ∈ T (K) a splitting with denominators
of size ≤ λ if Den(t) ≤ λ. Finally, we shall say that t is integral at a prime p (respectively,
σ ∈ Σ) of K if p does not lie in the support of OK/It (respectively, |t − sσ|σ ≤ 1).

Theorem 3.2. There exists a universal constant C ∈ R with the following property: Let
E be an arithmetic vector bundle of rank r over a number field K which is equipped with
a filtration of arithmetic vector bundles

0 = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Er−1 ⊆ Er = E

such that for all i = 0, . . . , r, the subquotients Li
def= Ei/Ei−1 are arithmetic line bundles

which satisfy the inequality

deg(Li) > log(DK)

(where d
def= [K : Q]). Then any E-torsor T admits a splitting with denominators of size

≤ 1
2
log(DK) + C · rd(log(rd) + 1)

(cf. Definition 3.1).
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Proof. Just as in the proof of Theorem 2.4, for λ ∈ R>0, we write OK(λ) for the arithmetic
line bundle over K defined as follows: The underlying OK-module of OK(λ) is OK ; the
norm of 1 ∈ OK at each σ ∈ Σ is given by |1|σ def= λ−1. Thus, if λ is much greater than 1,
OK(λ) will have lots of global sections (i.e., its h0 will be large). Observe further that if
λ ≥ 1, then one has a natural inclusion

OK = OK(1) ↪→ OK(λ)

(which induces the identity map OK → OK on the underlying OK-modules). This inclusion
is integral at all the primes (finite and infinite) of K.

If E is an arithmetic vector bundle on K, let us write E(λ) def= E ⊗OK
OK(λ). Note

that

deg(E(λ)) = deg(E) + rd · log(λ)

If λ ≥ 1, we have a natural inclusion

E(λ−1) ↪→ E

(given by tensoring the inclusion of the preceding paragraph with E(λ−1)). Note that
by “pushing forward” (or, equivalently, executing a “change of structure group”) via this
inclusion, any E(λ−1)-torsor induces an E-torsor. Moreover, it follows easily from the
definitions that every E-torsor arises in this fashion from some (not necessarily unique)
E(λ−1)-torsor.

Now let λ ∈ R be ≥ 1. Let us assume that we are given an E-torsor, together
with an E(λ−1)-torsor from which it arises. This E(λ−1)-torsor may be thought of as
corresponding to an exact sequence (cf. Example 2.3)

0 → E(λ−1) → M → OK → 0

If we tensor this exact sequence with OK(λ), then we obtain an exact sequence

0 → E → M(λ) → OK(λ) → 0

Now we would like to compute (cf. the proof of Theorem 2.4) the various h0’s of this exact
sequence. Let us write C′ (> 0) for the universal constant of Theorem 1.5. Then Theorem
1.5 implies that

h0(M(λ)) ≥ h0((M(λ))∗) − (r + 1)C′d(log(d) + log(r + 1) + 1) + χ(M(λ))

≥ deg(M (λ)) − 2C ′rd(log(rd) + 2) + (r + 1)χ(OK)

= deg(E) + d · log(λ) − 2C ′rd(log(rd) + 2) + (r + 1)χ(OK)
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Next, let us observe that for i = 0, . . . , r, we have

deg(L
∗
i ) = deg(ωK) − deg(Li) ≤ log(DK) − deg(Li) < 0

(by Proposition 1.4 and the assumptions on E). Thus, in particular, we have (for i =
0, . . . , r) h0(L

∗
i ) = 0. Since the given filtration on E induces a filtration on E

∗
with

subquotients equal to L
∗
i (for i = 0, . . . , r), we thus obtain:

h0(E
∗
) = 0

In particular, Theorem 1.5 implies that

h0(E) ≤ χ(E) + C′rd(log(rd) + 1)

= deg(E) + r · χ(OK) + C′rd(log(rd) + 1)

Putting everything together, we see that

h0(M(λ)) − h0(E) ≥ χ(OK) + d · log(λ) − 3C ′rd(log(rd) + 2)

≥ d · log(λ) − 1
2
log(DK) − 3C ′rd(log(rd) + 2)

Now let us set

λ
def=

1
2d

log(DK) + C · r(log(rd) + 1)

where C
def= 7C ′. Then we obtain that h0(M(λ)) − h0(E) > 0, i.e., there exists some

globally integral m ∈ M(λ) whose image m′ in OK(λ) is nonzero. Moreover, the zero locus
of m′ ∈ OK(λ) has logarithmic degree = deg(OK(λ)) = d · log(λ). Thus, sorting through
the definitions, we conclude that m

m′ defines a splitting of the torsor T with denominators
of size

≤ d · λ =
1
2
log(DK) + C · rd(log(rd) + 1)

as desired. ©
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§4. Examples from Geometry

In this §, we survey various examples of Arakelov-theoretic torsors that arise naturally
in arithmetic geometry. For a more detailed discussion of the ideas surrounding this topic,
we refer to the Introductions of [Mzk1,2] (especially, §0.8, 2.3, of the Introduction to
[Mzk2]). In particular, we explain the relationship of the general notion of a torsor in
Arakelov theory to the main topic of this paper, which is, effectively, the study of a specific
Arakelov-theoretic torsor canonically associated to the universal extension of an elliptic
curve.

Let K be a finite extension of Q, whose ring of integers we denote OK . Let X be
a smooth scheme over OK . Let L be a line bundle on X. Then L admits a connection
Zariski locally on X (since Zariski locally it is isomorphic to the trivial line bundle), hence
naturally defines a cohomology class

c1(L) ∈ H1(X,ΩX/OK
)

which is the Hodge-theoretic first Chern class of the line bundle L. More geometrically,
one may think of the space of connections on L as a torsor

TL → X

over the vector bundle ΩX/OK
. That is to say, ΩX/OK

acts on TL (by adding a differential
ω to a given connection ∇ to form a new connection ∇+ω), and moreover, any two sections
of TL differ by a section of ΩX/OK

.

Typically, this torsor will not admit any algebraic sections X → TL over X (cf., e.g.,
[Mzk1], Chapter I, §3, Theorem 3.4). In fact, if the topological first Chern class of L (with
coefficients in Q) is nonzero, then it follows that such sections do not exist. For instance,
if L is ample and X is proper (of dimension ≥ 1) over OK , then its first Chern class will
be nonzero, so TL → X will not admit any global sections.

Write

X def= X(C)

for the complex manifold associated to X over C. More generally, in the following dis-
cussion, we shall use ordinary Roman letters for algebraic objects over Z, and calligraphic
letters for the associated complex analytic objects. (The sole exception to this rule will be
the notation “O” for the structure sheaf.) Thus, we write TL def= TL(C). Then one may
consider real analytic sections

s : X → TL
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of the torsor TL → X . Typically, holomorphic sections will not exist (for instance, if X is
proper, then holomorphic sections are equivalent to algebraic ones). However, if one works
instead in the real analytic category, then it is not difficult to show that real analytic
sections always exist. For instance, if | − |L is a C∞ metric on the line bundle L, then
it is a well-known fact from complex geometry (cf., e.g., [Wells], Chapter III, §2) that
| − |L defines a natural C∞ connection ∇ on L. Thus, (by taking the “(1, 0)-part” of)
the connection ∇ defines a C∞ section of the torsor TL → X . If | − |L is real analytic
(and, in fact, it is not difficult to show that every C∞ metric may be approximated by
a real analytic one), then the corresponding section of TL → X will be real analytic. In
summary,

Real analytic metrics on L define real analytic sections of TL → X .

Moreover, if a real analytic | − |L defines the section s : TL → X , then the real analytic
(1, 1)-form

∂(s) ∈ Γreal analytic(X , ∧1,1 ΩX )

on X is (up to a universal constant factor) the curvature of the metric | − |L.

Next, we list some typical examples of this sort of situation:

Example 4.1. X = an abelian variety over an open subset of Spec(OK). In this case,
there is a unique (up to constant multiple) real analytic metric on L whose curvature is
invariant with respect to translation (cf. [Mumf3], §12). Thus, we have canonical metrics
on L. For instance, in the case where X is an elliptic curve E, and L = OE(eE) (where eE

is the origin of E), TL has a natural abelian group scheme structure (cf. Chapter III, §1,
4). This abelian group scheme is called the universal extension of E and is denoted by E†
(cf. Chapter III for a more detailed discussion of the universal extension). Moreover, in
this case, the real analytic section E → E† defined by the canonical metric on L is simply
the section defined by the real analytic subvariety

E†R ⊆ E†

which is the closure of the torsion points of E†. We refer to the discussion of the “Real
Analytic Splitting” in Chapter III, §3, for more details. This splitting in the case of elliptic
curves will play a fundamental role in this paper.

Example 4.2. X = Ag, the moduli stack of principally polarized abelian varieties of
dimension g over Z. In this case, the Siegel upper half-plane uniformization of the analytic
stack Ag carries a natural Kähler metric which is the unique metric on the Siegel upper
half-plane that is invariant with respect to the natural action of Sp2g(R) on the Siegel
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upper half-plane. For instance, if g = 1, then this metric is the well-known Poincaré
metric

dx ∧ dy

y2

on the upper half-plane. This metric induces a real analytic metric on the canonical bundle
of Ag (which is well-known to be ample).

Example 4.3. X is a hyperbolic curve over an open subset of Spec(OK). (A “hyperbolic
curve” is a family of curves obtained by removing a divisor of degree r which is étale over
the base from a family of smooth, proper, connected genus g curves such that 2g−2+r > 0.)
In this case, it follows from a well-known theorem (“Köbe’s uniformization theorem”) of
complex analysis that the univeral cover of the associated analytic object X is (a disjoint
union of copies of) the upper half-plane. Thus, the Poincaré metric on the upper half-plane
descends to define a real analytic Kähler metric on X . Moreover, this real analytic Kähler
metric defines a real analytic metric on the canonical bundle of X (cf. the Introductions
to [Mzk1,2]).

Example 4.4. X = Mg,r, the moduli stack of hyperbolic curves of type (g, r) over Z.
In this case, there is a canonical real analytic Kähler metric on the associated analytic
object Mg,r called the Weil-Petersson metric. This real analytic Kähler metric defines a
real analytic metric on the canonical bundle of Mg,r (cf. the Introductions to [Mzk1,2]).

We also note that the case of open X, or of X which have semi-stable reduction over OK ,
may be handled in a parallel fashion to the smooth case, using log structures. Since we do
not need to use log structures in any rigorous sense in the present survey, we leave this
generalization to the reader.

Thus, to summarize, we see that canonical line bundles L on smooth OK-schemes X
naturally define torsors TL (over the sheaf of differentials ΩX/OK

on X) which typically
have natural real analytic sections at the infinite primes of K arising from canonical real
analytic Kähler metrics on X(C). In particular, if one is given an OK-rational point

x ∈ X(OK)

then, by restriction, one obtains a torsor TL|x over the OK-vector bundle ΩX/OK
|x,

equipped with trivializations at the infinite primes of K (obtained by restricting the nat-
ural real analytic section of TL → X ). Since ΩX/OK

|x also gets a metric (obtained by
restricting the Kähler metric on X = X(C)), we thus see that we get precisely the data
of Definition 2.1, i.e., for each rational point x, we obtain an arithmetic torsor (as in §2)
naturally associated to x. This shows how arithmetic torsors arise naturally in arithmetic
geometry.
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In the present paper, we will especially be interested in the cases where X is either
(i) an elliptic curve E, or (ii) the moduli stack of elliptic curves over Z. In fact, the torsor
arising from Examples 4.2, 4.3, above in the case of the moduli stack of elliptic curves
may be thought of as precisely the torsor obtained from the tautological elliptic curve by
looking at tangent space to the origin of the universal extension of the tautological elliptic
curve (cf. Chapter III, Proposition 1.3; Chapter III, §3, “The Real Analytic Splitting”;
[Mzk2], Introduction, §0.7, 0.8). Thus, in summary, the torsors that we are interested in
in the present paper all arise as the restriction to some sort of rational point (where (ii)
above corresponds effectively to the case where the rational point is valued in some sort of
ring of “dual numbers”) of the arithmetic torsor

(E† → E, E†R ⊆ E†)

given by the universal extension of an elliptic curve. Put another way,

The main goal of the present paper is to understand the arithmetic torsor

(E† → E, E†R ⊆ E†) given by the universal extension of an elliptic curve.

Bibliography

[Ahlf] L. Ahlfors, Complex Analysis, McGraw-Hill Book Company (1979).
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Chapter II: The Galois Action on Torsion Points

§0. Introduction

In some sense, the main goal of the present paper is to prove a comparison theorem that
relates the natural Arakelov-theoretic torsors arising from an elliptic curve (cf. Chapter I,
especially, Chapter I, §4) to the Galois action on the torsion points of the elliptic curve.
In Chapter I, we introduced the “torsor side” of this comparison; thus, in the present
Chapter, we wish to discuss the “torsion point side” of the comparison. More precisely, in
this Chapter, we show that, in certain situations, the Galois action on the torsion points
of an elliptic curve is as transitive as possible, i.e., that (cf. Theorem 4.4):

If we consider all elliptic curves over number fields of bounded degree
which have semi-stable reduction everywhere and at least one prime of
bad reduction, then for any prime number l of the order of the height hE

of the elliptic curve, the image of the associated Galois representation
in GL2(Zl) contains SL2(Zl).

In particular, the elliptic curve will not have any rational torsion points of order l. Thus,
this result may be regarded as a sort of “poor man’s uniform boundedness conjecture” (now
Merel’s theorem ([Mer]) – although, in fact, it is not strictly implied by Merel’s theorem).
Alternatively, it may regarded as an effective version of a theorem of Serre ([Ser], Chapter
IV, Theorem 3.2).

The proof is similar to that of Faltings’ proof of the Tate Conjecture ([Falt]), only
technically much simpler. That is to say, the main technique is essentially the standard
one (going back to Tate) for proving “Tate conjecture-type results.”

§1. Some Elementary Group Theory

Let l ≥ 5 be a prime number. In this §, we review some well-known results concerning
the group theory of SL2(Zl).

Lemma 1.1. Let G ⊆ SL2(Fl) be the subgroup generated by the matrices α
def=
(
1 1
0 1

)
,

β
def=
(
1 0
1 1

)
. Then G = SL2(Fl).

Proof. Note that if μ, λ ∈ Fl, then βμ · αλ (where this expression makes sense since
both αl and βl are equal to the identity matrix) takes the vector v

def=
(
0
1

)
to
(

λ
μ·λ+1

)
. In
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particular, if we let γ
def=
(
0 1
1 0

)
, then for any λ ∈ F×l , we have γ · v, λ · γ · v ∈ G · v. We thus

obtain that λ · v ∈ G · v. Thus, in summary, we have proven that F2
l − {

(
0
0

)
} ⊆ G · v.

Now let us prove that an arbitrary element δ ∈ SL2(Fl) is contained in G. By the
conclusion of the preceding paragraph, we may assume that δ ·v = v. But this implies that
δ is an upper triangular matrix all of whose diagonal entries are “1.” Thus, δ is a power
of α, hence contained in G, as desired. ©

Corollary 1.2. The finite group SL2(Fl) is simple.

Proof. Let λ ∈ F×l be such that λ2 �= 1. (Note that such λ exists since l ≥ 5.) Let

ε
def=
(
λ 0
0 λ−1

)
. Then ε ·α · ε−1 ·α−1 = αλ2−1. Thus, α (and, similarly, β) is contained in the

commutator subgroup of SL2(Fl), so Corollary 1.2 follows from Lemma 1.1. ©

Lemma 1.3. Let G ⊆ GL2(Fl) be a subgroup that contains the matrix α
def=
(
1 1
0 1

)
, as

well as at least one matrix that is not upper triangular. Then SL2(Fl) ⊆ G.

Proof. Note that α generates an l-Sylow subgroup S of GL2(Fl), and that the number
of l-Sylow subgroups of GL2(Fl) is precisely l + 1. Since the normalizer of S in GL2(Fl)
is the set of upper triangular matrices, and we have assumed that G contains at least one
such matrix, it follows that the number nG of l-Sylow subgroups of G is ≥ 2. On the
other hand, by the general theory of Sylow subgroups, it follows that nG is congruent to
1 modulo l. Since 2 ≤ nG ≤ l + 1, we thus obtain that nG = l + 1. In particular, in
the notation of Lemma 1.1, we conclude that α, β ∈ G. Thus, by Lemma 1.1, we have
SL2(Fl) ⊆ G, as desired. ©

Corollary 1.4. Let l be a prime number ≥ 5. Let G ⊆ GL2(Zl) be a closed subgroup
whose image H in GL2(Fl) contains the matrix α

def=
(
1 1
0 1

)
, as well as a matrix which is

not upper triangular. Then SL2(Zl) ⊆ G.

Proof. By Lemma 1.3, we have that SL2(Fl) ⊆ H. Let G′ ⊆ SL2(Zl) be the commutator
subgroup of G. Thus, by Corollary 1.2, G′ surjects onto SL2(Fl). Now by [Ser], Chapter
IV, §3.4, Lemma 3, this implies that SL2(Zl) = G′ ⊆ G, as desired. ©

§2. The Height of an Elliptic Curve

Let K be a number field, of degree d over Q. Let E → Spec(OK) be a semi-abelian
variety of dimension 1 whose generic fiber EK is proper. Thus, EK is an elliptic curve over
K. Let us write
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ωE

for the finite, flat OK-module of rank one consisting of the invariant differentials on E.

If σ : K ↪→ C is a complex embedding, then we get a natural metric on (ωE)σ
def=

(ωE) ⊗K,σ C by integration: if α ∈ (ωE)σ, then

|α|2 def=
∫

Eσ

α ∧ α

(where Eσ
def= E ⊗K,σ C, and α is the complex conjugate of α). Thus, by equipping ωE

which this metric at the archimedean places of K, we obtain an arithmetic line bundle ωE

(cf. Chapter I, Definition 1.1). Let us write

hE
def= deg(ωE) ∈ R

This number is often referred to as the Faltings height of the elliptic curve E.

Next, let us observe that E → Spec(OK) defines a classifying morphism

φ : Spec(OK) → M1,0

where M1,0 is the moduli stack of semi-abelian varieties of dimension one over Z. As
is well-known, this stack has a “divisor at infinity” ∞M ⊆ M1,0, whose complement
M1,0 ⊆ M1,0 is the moduli stack of elliptic curves over Z. Thus, we may consider the
divisor

∞E
def= φ−1(∞M) ⊆ Spec(OK)

Moreover, we let

deg(∞E) def= log(#(O∞E
)) ∈ R

Now we have the following well-known result:

Proposition 2.1. There exists a universal constant C (independent of K, d, and E)
such that: 1

12 · deg(∞E) ≤ hE + d · C.

Proof. This follows immediately from the formula of Proposition 1.1 of [Silv2], together
with the fact that the archimedean term on the right-hand side of this formula is universally
bounded below by d · C, where C is a universal constant independent of K, d, and E. ©
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Proposition 2.2. Let α ∈ R. Then the number of isomorphism classes of elliptic curves
EK over number fields K of degree ≤ d such that hE ≤ α is finite.

Proof. This follows from [Silv1], Proposition 8.2 and [Silv2], Proposition 1.1. ©

§3. The Galois Action on the Torsion of a Tate Curve

Let K be a finite extension of Qp, where p is a prime number. Let us denote its residue
field by k; the maximal ideal of its ring of integers by mK ; and its associated valuation
map by vK : K× → Z (normalized so that vK is surjective). Also, let us write K for
an algebraic closure of K, and ΓK

def= Gal(K/K). Let E → Spec(OK) be a semi-abelian
scheme of dimension one over OK . Let us assume, moreover, that the generic fiber EK of
E is proper, while the special fiber Ek of E is equal to (Gm)k, the multiplicative group
over k.

Let l be a prime number (possibly equal to p). Let us write

Ml(E) def= Hom(Z/l · Z, E(K))

for the “mod l” Tate module of EK . Thus, Ml(E) is (noncanonically) isomorphic as an
Fl-module to F2

l , and is, moreover, equipped with a continuous action by ΓK (induced
by the natural action of ΓK on K). Also, it is well-known (see, e.g., [FC], Chapter III,
Corollary 7.3) that Ml(E) fits into a natural exact sequence of ΓK-modules

0 → Fl(1) → Ml(E) → Fl → 0

where the “(1)” is a Tate twist, and “Fl” is equipped with the trivial Galois action.
Moreover, the extension class associated to this exact sequence is precisely that obtained
by extracting an lth root of the Tate parameter qE ∈ mK . The Tate parameter is an
element of mK that is naturally associated to E and has the property that the subscheme
OK/(qE) is equal to the pull-back via the classifying morphism Spec(OK) → M1,0 of the
divisor ∞M ⊆ M1,0. Thus, the above exact sequence splits if and only if qE has an lth root
in K. Note that in order for this to happen, it must be the case that vK(qE) is divisible
by l. In particular, we have the following result:

Lemma 3.1. Suppose that N ⊆ Ml(E) is a one-dimensional Fl-subspace which is
stabilized by ΓK . Then either vK(qE) ∈ l ·Z, or N is equal to the subspace Fl(1) ⊆ Ml(E)
of the above exact sequence.

Definition 3.2. We shall refer to vK(qE) ∈ Z>0 as the local height of E.
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Next, let us recall that the submodule Fl(1) ⊆ Ml(E) defines a finite, flat subgroup
scheme

μl ⊆ E

over OK . Thus, we may form the quotient

E′
def= E/μl

Then E′ → Spec(OK) is a one-dimensional semi-abelian scheme over OK whose special
fiber is (Gm)k and whose generic fiber is proper. Moreover, its Tate parameter qE′ satisfies

qE′ = ql
E

Let us write

deg(∞E) def= log(#(OK/(qE))) ∈ R

Then we have

deg(∞E′) = l · deg(∞E)

§4. An Effective Estimate of the Image of Galois

Let us write Q for an algebraic closure of Q. Let K be a subfield of Q of degree
d < ∞ over Q, and let E → Spec(OK) be as in §2.

Let l be a prime number. Suppose that we are given a subgroup scheme GK ⊆ EK

(over K) such that over Q, GK becomes isomorphic to Z/l · Z. We shall call such GK l-
cyclic. Write (EG)K for the quotient of EK by GK . Note that since (EG)K is isogenous to
EK , it has semi-stable reduction at all the primes of K, hence extends to a one-dimensional
semi-abelian scheme EG → Spec(OK).

Lemma 4.1. Suppose that GK ⊆ EK is l-cyclic, and that l is greater than the local
heights of E at all of its primes of bad (multiplicative) reduction. Then there exists a
universal constant C (independent of K, d, and E) such that

1
12

l · deg(∞E) ≤ hE + d · C + 2d · log(l)

52



Proof. Note that the assumption on l implies (by Lemma 3.1) that at all the primes of
bad reduction, GK corresponds to the subspace Fl(1) of Lemma 3.1. Thus, at primes of
bad reduction, EG may be identified with the elliptic curve E′ discussed at the end of §3.
In particular,

deg(∞EG
) = l · deg(∞E)

On the other hand, the degree l covering morphism (EG)K → EK extends (cf., e.g.,
[FC], Chapter I, Proposition 2.7) to a morphism EG → E. Thus, we have a natural
inclusion ωE ⊆ ωEG

whose cokernel is annihilated by l. Moreover, since integrating a
(1, 1)-form over Eσ differs from integrating over (E/G)σ by a factor of l, it follows that

deg(ωEG
) ≤ deg(ωE) + 2d · log(l)

Thus, Lemma 4.1 follows from Proposition 2.1. ©

Lemma 4.2. There exists a universal (positive) constant C (independent of d) such
that for each positive integer d, there exists a finite subset Ed ⊆ M1,0(Q) with the following
property: Suppose that there exists an l-cyclic GK ⊆ EK , where [K : Q] = d; EK is an
elliptic curve over K with semi-stable reduction at all primes and at least one prime of bad
reduction; and l ≥ 100 · (hE + C · d2). Then the point of [EK ] ∈ M1,0(Q) defined by EK

belongs to Ed.

Proof. First, observe that if v is any local height of EK , then deg(∞E) ≥ v · log(2).
Thus, Proposition 2.1 implies that by choosing C appropriately, we may assume that
hE + C · d2 ≥ hE + C · d ≥ 1

12 · deg(∞E). Thus, we obtain that

l ≥ 100
12

· deg(∞E)

≥ (
100 · log(2)

12
) · v

> v

which shows that the hypotheses of Lemma 4.1 are satisfied. Thus, we conclude (from
Lemma 4.1) that if we choose C so that l ≥ 48d·log(l)

log(2) (cf. Lemma 4.3 below) then

1
12

l · deg(∞E) ≤ hE + d · C′ + 2d · log(l)

≤ hE + d · C′ + l · log(2)
24
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for some universal constant C′. Next, observe that since EK has at least one prime of bad
reduction, it follows that log(2) ≤ deg(∞E). Thus, substituting into the above inequality,
we obtain that

l · log(2)
24

≤ hE + d · C′

On the other hand, log(2)
24 ≥ 2

100 , and, by assumption, l ≥ 100 · hE , so (substituting) we
obtain that 2hE ≤ hE + d ·C′, i.e., hE ≤ d ·C′. But this implies, by Proposition 2.2, that
[EK ] belongs to some finite exceptional set Ed, as desired. ©

Lemma 4.3. Let x and y be real numbers such that x, y ≥ 2, and x ≥ 2y2. Then
x ≥ y · log(x).

Proof. First observe that y ≥ 1
2 · log(2) + log(y) for y ≥ 2. Indeed, this is true for y = 1

(since 4 ≥ 3 ≥ 3 · log(2)), and the function φ(y) = y − log(y) has derivative 1 − 1
y , which

is ≥ 0 for y ≥ 1. Thus when x = 2y2, we have x = 2y2 ≥ 2y · log(2
1
2 · y) = y · log(x), as

desired. Moreover, the function ψ(x) = x − y · log(x) has derivative 1 − y
x , which is ≥ 0

for x ≥ 2y2 ≥ 2y ≥ y (since y ≥ 1). Thus, ψ(x) is increasing for x ≥ 2y2, so ψ(x) ≥ 0 for
x ≥ 2y2, as desired. ©

Theorem 4.4. There exist:

(1) a universal (positive) constant C (independent of d); and

(2) for each positive integer d, a finite subset Ed ⊆ M1,0(Q)

with the following property: Suppose that

(i.) K ⊆ Q is a subfield of degree d < ∞;

(ii.) EK is an elliptic curve over K with semi-stable reduction at all
primes and at least one prime of bad reduction;

(iii.) the isomorphism class [EK ] ∈ M1,0(Q) does not belong to Ed;

(iv.) l is a prime number ≥ 100 · (hE + C · d2).

Then the image of the Galois representation Gal(Q/K) → GL2(Zl) associated to EK

contains SL2(Zl).
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Proof. As we saw in the proof of Lemma 4.2, in the situation under consideration, the
local height of EK at a finite prime of EK of bad reduction can never be divisible by l.
Since, by hypothesis, at least one such finite prime exists, it follows that the image of
Galois in GL2(Fl) contains the element “α” (cf. Corollary 1.4), i.e.,

(
1 1
0 1

)
. Moreover, by

Lemma 4.2, it follows that the image of Galois in GL2(Fl) contains at least one matrix
which is not upper triangular. Thus, we conclude from Corollary 1.4 that the image of
Galois in GL2(Zl) contains SL2(Zl), as desired. ©
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Chapter III: The Universal Extension
of a Log Elliptic Curve

§0. Introduction

In this Chapter, we review various well-known facts concerning the universal extension
of an elliptic curve. The main ideas that we discuss are as follows: Given a log elliptic
curve (cf. Definition 1.1) E → S, we define its universal extension E† → E (cf. Definition
1.2) as a certain group scheme of line bundles on E of degree 0 equipped with a connection.
For degenerating log elliptic curves (i.e., “Tate curves”), this universal extension admits
a canonical splitting (cf. Theorem 2.1) which is essentially uniquely characterized by the
fact that it is a group homomorphism. The universal extension E† → E also has a Hodge-
theoretic interpretation (cf. Theorem 4.2) as the Hodge-theoretic first Chern class of the
divisor defined by the origin of E. Moreover, this Hodge-theoretic interpretation of the
universal extension allows one to analytically continue (cf. Theorem 5.6) the canonical
splitting, relative to the function-theoretic context of [Mumf]. We construct this analytic
continuation by studying the Schottky-Weierstrass ζ-function (cf. §5), which is a certain
analogue of the classical Weierstrass ζ-function, but for the Schottky uniformization (as
opposed to the full uniformization by the complex plane, as in the classical case) of an
elliptic curve. This analytic continuation allows one to give explicit coordinates for the
torsion points of the universal extension (cf. Corollary 5.9), which play a fundamental role
in this paper. During our analysis of the universal extension, we pause, in §3 (cf. also
Remark 2 in §6), to review the complex analogues of the ideas discussed in this Chapter.
Finally, in §6, 7, we discuss certain “higher” analogues of the Schottky-Weierstrass ζ-
function.

§1. Definition of the Universal Extension

In this §, we would like to define a certain canonical extension of a “log elliptic curve”
– called the universal extension of the log elliptic curve – which will play a key role in the
present paper. One useful reference for this universal extension (in the non-logarithmic
case) is Appendix C of [Katz].

Let

M1,1
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be the moduli stack of one-pointed stable curves of genus one over Z (see, e.g., [Knud] for
more details). Note that M1,1 is equipped with a natural log structure (in the sense of
[Kato]) defined by its divisor at infinity. We denote the resulting log stack by Mlog

1,1. Let

(C → M1,1, ε : M1,1 → C)

denote the tautological one-pointed stable curve of genus one. Now observe that the inverse
image on C of the divisor at infinity of M1,1 is a divisor with normal crossings on C, hence
defines in a natural way a log structure on C. Denote the resulting log stack by Clog. Let
Mlog

1,0
def= Mlog

1,1. Thus, we have a natural log smooth morphism

Clog → Mlog

1,0

together with a section ε : M1,0 → C. Let E ⊆ C be the open substack of C of points
that are smooth over M1,0. Since ε maps into E , we have (by abuse of notation) a section
ε : M1,0 → E . Moreover,

(E → M1,0, ε : M1,0 → E)

forms a semi-abelian scheme (see, e.g., [FC], Definition 2.3 of Chapter I, for more details)
of dimension 1 over M1,0.

Definition 1.1. We shall refer to (Clog → Mlog

1,0, ε : M1,0 → E) as the universal log
elliptic curve. If Slog is a fine noetherian log scheme (see [Kato] for more details), then we
shall refer to the datum of a morphism α : Slog → Mlog

1,0 as a log elliptic curve.

This definition prompts the following basic remarks:

(1) The point of distinguishing Mlog

1,0 from Mlog

1,1 (even though both nota-
tions denote the same log stack) is that the natural log structures of the
tautological objects that they parametrize differ. This leads for instance
to different canonical p-adic uniformization theories (as in [Mzk1]).

(2) Let α : Slog → Mlog

1,0 be a log elliptic curve. Then pulling back Clog →
Mlog

1,0, E , and ε gives rise to C log → Slog, E → S, e : E → S. Often,
by abuse of terminology, we shall say “let Clog → Slog be a log elliptic
curve.” This means that implicitly we assume that some α has been
given and that C log has been constructed from α in the fashion just
described.

This completes the discussion of the definition of a log elliptic curve.
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Let

f log : C log → Slog

be a log elliptic curve. Let

ωE
def= e∗ΩE/S

Thus, ωE is a line bundle on S. Let W → S denote the affine group scheme defined by
ωE . Thus, W is the spectrum of the symmetric algebra of τE

def= ω∨E (the dual bundle to
ωE) over OS . Now we would like to define a natural extension of group schemes

0 → W → E† → E → 0

(cf. Appendix C, §C1, of [Katz]), as follows. First, let T be an S-scheme. Since E† will
be defined as a functor over E, points of E†(T ) will consist of points of E(T ) plus some
extra information:

We define E†(T ) to be the set of isomorphism classes of pairs (x,∇x),
where x ∈ E(T ), and ∇x is a logarithmic connection (with respect to
the morphism Clog → Slog) on the line bundle Lx

def= OCT
(x−e) (where

CT = C ×S T ).

(Here in the notation “OCT
(x− e),” we use “e” (respectively, “x”) to denote the (Cartier)

divisor defined by the image of the section e (respectively, x) in CT .) It is immediately
clear that E† is a torsor over E under the group scheme W (since ωE may be identified
with the push-forward of ΩClog/Slog via f log : C log → Slog). Moreover, E† has a natural
abelian group law of its own given as follows: The sum of (x,∇x) and (y,∇y) is the line
bundle Lx+y

∼= Lx ⊗OCT
Ly equipped with the connection ∇x ⊗∇y.

Definition 1.2. We shall refer to the exact sequence

0 → W → E† → E → 0

of smooth, abelian group schemes over S as the universal extension of E → S (or C log →
Slog).

Let

H def= R1f log
DR,∗OC
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be the first (logarithmic) de Rham cohomology module of f log : C log → Slog (see, e.g.,
[Kato]). Then H is a rank two vector bundle on S equipped with a filtration called the
Hodge filtration. This filtration gives rise to an exact sequence

0 → ωE → H → τE → 0

Proposition 1.3. There is a canonical isomorphism between H and the tangent space to
the group scheme E† at the origin. Moreover, the exact sequence above arising from the
Hodge filtration on H corresponds under this isomorphism to the filtration induced on the
tangent space at the origin to E† by the exact sequence 0 → W → E† → E → 0.

Proof. This follows immediately by working over the dual numbers S[ε]/(ε2) and thinking
about the functorial definitions of E† and de Rham cohomology. ©

§2. Canonical Splitting at Infinity

We maintain the notations of §1. In this §, we would like to discuss certain canonical
splittings of the universal extension E† → E of E.

In this §, we assume that the inverse image (via the implicit classifying morphism
α : Slog → Mlog

1,0 for the given log elliptic curve) of the divisor at infinity of M1,0 is a
(Cartier) divisor D ⊆ S. Write J for the ideal defining D. Thus, J is a line bundle on S.
Moreover, we have a natural identification:

E|D = (Gm)D

Now let Ŝ be the completion of S at D. Thus, Ŝ is a formal scheme. Let us write E
Ŝ

for
the formal object obtained by pulling back E → S to Ŝ. Then one knows that

E
Ŝ
∼= (Gm)

Ŝ

(where the isomorphism is an isomorphism of J -adic formal group objects over the formal
scheme Ŝ). Indeed, this is a relative simple special case (the case already known to Tate) of
the theory of [FC], Chapter III. In fact, this isomorphism is the unique such isomorphism
that reduces to the identity over D (by [FC], Chapter I, Theorem 2.2).

Now let us pull-back the universal extension E† → E to a morphism

E
†
Ŝ
→ E

Ŝ
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over Ŝ. We would like to construct a certain canonical section of this morphism. This
canonical section will be a homomorphism of group objects. Thus, by [FC], Chapter I,
Theorem 2.2, it will exist and be unique once it is constructed over D.

The definition of this canonical section over D is given as follows: As discussed above,
we identify ED with (Gm)D. Let us think of the affine ring of (Gm)D as the ring of Laurent
polynomials in an indeterminate u. Now let x be a D-valued point of (Gm)D. Then (as in
Appendix C, §C1, of [Katz]) points of E† lying over x may be identified with sections of
ωClog/Slog ⊗OS

OD that are regular away from x and e, but have a simple pole with residue
1 (respectively, −1) at x (respectively, e). For instance, if x corresponds to the section ux

of O×D, then

ωx
def=

du

(u − ux)
− du

(u − 1)

is such a differential. Since the correspondence x �→ ωx is clearly functorial, we thus obtain
a scheme-theoretic section

ED → E
†
D

It remains to check that this is a homomorphism of group schemes. To see this, suppose
that y ∈ E(D), z

def= x · y. Then the isomorphism between OCD
(x − e) ⊗OCD

(y − e) and
OCD

(z − e) is given by division by the rational function

(u − 1)(u − uz)
(u − ux)(u − uy)

Moreover, the logarithmic derivative of this rational function is clearly equal to ωz−ωx−ωy.
This observation implies that the section constructed is a homomorphism of group schemes,
as desired.

Thus, in summary, we see that we have constructed a homomorphism of group objects

κ : E
Ŝ
→ E

†
Ŝ

in the formal category over Ŝ which forms a section of E
†
Ŝ
→ E

Ŝ
. Moreover, since there

are no nontrivial homomorphisms from Gm into W (note: W is Zariski locally isomorphic
to Ga), it follows that κ is the unique such section. We state this as a theorem:

Theorem 2.1. The extension

0 → W
Ŝ
→ E

Ŝ
→ E

†
Ŝ
→ 0
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of group objects over the formal scheme Ŝ admits a unique splitting

κ : E
Ŝ
→ E

†
Ŝ

– which we shall refer to as the canonical splitting of this extension. In particular, it
follows that there exists a natural isomorphism

E
†
Ŝ
∼= (Gm)

Ŝ
× W

Ŝ

of group objects over Ŝ.

Now recall that E† may be thought of as an ωE-torsor over E. Thus, in particular,
we may write this torsor as an extension of coherent OE-modules

0 → OE → T → τE |E → 0

Let R
E† be the sheaf of quasi-coherent OE-algebras whose spectrum is E†:

E† = Spec(R
E†)

Thus, Zariski locally on E, R
E† is the symmetric algebra over OE of τE |E . Moreover,

there is a natural inclusion

T ⊆ R
E†

and T generates R
E† as an OE-algebra. If i is a positive integer, let us denote by

R
E† [i] ⊆ R

E†

the OE-submodule of R
E† generated by OE-linear combinations of products of i sections

of T . (Also, let R
E† [0] def= OE .)

Definition 2.2. We shall refer to sections of O
E† that lie inside R

E† [i] as being of
torsorial degree ≤ i. More generally, if L is a line bundle on E, then we shall refer to
sections of L ⊗OE

O
E† that lie inside L⊗OE

R
E† [i] as being of torsorial degree ≤ i.

Now by Theorem 2.1, we have a natural splitting
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E
†
Ŝ
∼= E

Ŝ
× W

Ŝ

This natural splitting then induces an isomorphism

(R
E†)

Ŝ
∼= OE

Ŝ

[τE |E
Ŝ

]

(where “[−]” means “the symmetric algebra of”). That is to say, whereas R
E† is, in gen-

eral, only Zariski locally isomorphic to a polynomial algebra, over Ŝ, it becomes naturally
isomorphic to a polynomial algebra (i.e., the symmetric algebra of τE |E

Ŝ

). Thus, if f is a
section of L ⊗O

E
†
Ŝ

, one can make the following definition:

Definition 2.3. We shall refer to the degree i term of f (relative to the above isomor-
phism of (R

E†)
Ŝ

with a polynomial algebra) as the degree i component

Compi(f) ∈ L ⊗OS
τ⊗i
E |E

Ŝ

of f .

§3. Canonical Splittings in the Complex Case

Before proceeding, we pause to review the basic theory of the universal extension and
its canonical splittings over the complex numbers (cf., e.g., [Katz], Appendix C). Thus,
let E be an elliptic curve over C. Then its universal extension E† may be constructed
analytically as follows: First, recall the de Rham isomorphism

H1
DR(E,OE) ∼= H1

sing(E,C)

between the de Rham cohomology (algebraic or holomorphic) of E and the singular coho-
mology of E with complex coefficients. Let

Λ ⊆ H def= H1
DR(E,OE)

be the subgroup defined (using the de Rham isomorphism) by

H1
sing(E, 2πi · Z) ⊆ H1

sing(E,C)
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Thus, Λ is a free Z-module of rank 2, and C ⊗Z Λ ∼= H.

Now by Proposition 1.3 and the well-known theory of the (complex analytic) expo-
nential map of a complex Lie group, we have a natural uniformizing map

H → E†

compatible with the additive group structures of H and E†. Moreover, the kernel of this
homomorphism (cf. the discussion at the end of [Katz], Appendix C, §C5) is

Λ ⊆ H

Thus, we have the following:

Proposition 3.1. If E is an elliptic curve over C, then (the complex Lie group defined

by) E† is naturally isomorphic to the quotient

H/Λ

where H is the first de Rham cohomology module of E, and Λ is the Z-submodule arising
from the singular cohomology of E with coefficients in 2πi · Z.

Next, we would like to discuss certain canonical splittings that exist in the complex
analytic case. In fact, in the complex analytic case, there are three different types of
canonical splitting, all of which are well-known and classical, and all of which will be
relevant to the theory of the present paper (but in different ways). The three canonical
splittings that we will consider are the following:

The Real Analytic Splitting: Write ΛR (respectively, ΛC) for Λ ⊗Z R (respectively,
Λ ⊗Z C). Define

ER
def= ΛR/Λ ⊆ ΛC/Λ = E†

Thus, ER is a real analytic submanifold of E†. Moreover, it is easy to see that ER maps
bijectively onto E, i.e., we have an isomorphism of real analytic Lie groups

ER
∼= E

Unlike E, however, ER is only a “real analytic torus,” not a complex analytic torus inside
E†. Put another way, ER defines a real analytic section
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κR : E → E†

of E† → E which is a homomorphism in the category of real analytic Lie groups.

Definition 3.2. We shall refer to κR : E → E† as the canonical real analytic section of
E† → E.

Remark 1. Note in particular that since κR is a group homomorphism, it maps torsion
points of E to torsion points of E†. Thus, although κR is only defined in the real analytic
category, its restriction to torsion points can be defined entirely algebraically. For instance,
if E is defined over a number field, then the restriction of κR to torsion points of E is also
defined over a number field. This fact will be of fundamental importance in this paper.

Remark 2. Although the following discussion will not be very relevant to the present
paper, the reader might wonder (in view of the choice of notation) whether κR is, in some
sense, “analogous” to the formal analytic κ of Theorem 2.1. In fact, there is an analogy:
Namely, ER ⊆ E† may be obtained as the invariant subset of a certain natural complex
conjugation morphism on E†. Moreover, frequently in discussions of global motives, it is
natural to think of complex conjugation as “Frobenius at the infinite prime.” On the other
hand, the splitting κ may also be constructed p-adically as follows: E† may be thought of
as a certain crystal in group schemes on the log crystalline site of Slog. Put another way,
E† is, in essense, the log crystalline cohomology of C log → Slog with coefficients in O×.
Moreover, as a log crystalline cohomology object, E† is equipped with a natural Frobenius
action. The section κ may then be constructed p-adically as the unique Frobenius invariant
section of E† → E. That is to say, both κ and κR may be constructed as invariant subsets
of Frobenius actions at finite and infinite primes, respectively. We refer to the discussion
of [Mzk2], Introduction, §1, for more details.

The Gm-Splitting: To define this splitting, fix a rank one Z-submodule:

Λ1 ⊆ Λ

This splitting defines an intermediate covering of the covering defined by the exponential
map of E:

τE → τE/Λ1 → τE/Λ = E

(where by abuse of notation, we also denote by Λ the image of Λ ⊆ H under the projec-
tion H → τE arising from the Hodge filtration). Note that τE/Λ1 is isomorphic (by an
isomorphism which is unique up to composition with the inversion map) to Gm (i.e., the
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multiplicative group Gm over C, regarded as a complex analytic Lie group). Thus, in the
following discussion, we shall make the following identification:

τE/Λ1 = Gm

In other words, the choice of Λ1 defines a uniformization of E by Gm. In particular, we
may think of this uniformization as giving a presentation of E as follows:

E = Gm/qZ

where q ∈ Gm = C×. This uniformization of E is referred to as the Schottky uniformization
of E (and depends on the choice of Λ1 ⊆ Λ).

Now let us consider the universal extension E† of E. Now we have a commutative
diagram:

Λ1 = Λ1 = Λ1⋂ ⋂ ⋂
(Λ1)C

def= Λ1 ⊗Z C ⊆ ΛC = H −→ τE

If we form the quotient of the second line by the first, we then obtain two morphisms

(Λ1)C/Λ1 −→ E†|Gm −→ Gm

whose composite is an isomorphism. Put another way, we have constructed a holomorphic
section

κΛ1 : Gm → E†|Gm

of the pull-back of E† → E by Gm → E.

Definition 3.3. We shall refer to κΛ1 as the Gm-splitting associated to Λ1.

Remark. This splitting is the complex analogue of the splitting of Theorem 2.1. Indeed,
it is not difficult to check that if, in the context of Theorem 2.1, i.e., of a degenerating
elliptic curve, one takes for Λ1 ⊆ H1

sing(E, 2πiZ) = Hsing
1 (E,Z)∨ (where “∨” denotes the

dual Z-module) the Z-submodule which is the annihilator of the submodule

Ker{Hsing
1 (E,Z) → Hsing

1 (the degenerate elliptic curve,Z) = Z}
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i.e., the annihilator of the vanishing cycle, then for this choice of Λ1, the splitting κΛ1

just constructed coincides with the complex analytic splitting of the universal extension
defined by the κ of Theorem 2.1 in a (complex analytic) neighborhood of the point at
infinity ∞ ∈ M1,0(C). Indeed, the fact that these two splittings coincide follows from the
fact that there do not exist any nontrivial homomorphisms of complex Lie groups C× → C.

The η-Splitting: Here, we follow the treatment of [Katz], Appendix C, §C5. Fix a C-
linear isomorphism C ∼= ωE . This isomorphism makes it easier to describe the splitting in
question. In fact, however, the splitting will be entirely independent of the choice of iso-
morphism C ∼= ωE . Once this isomorphism is fixed, we get a choice of invariant differential
ω = dz (where z is the standard coordinate on C), and so we can write

E = C/Λ

(where by abuse of notation, we also denote by Λ the image of Λ ⊆ H under the projection
H → τE arising from the Hodge filtration). Moreover, one has the Weierstrass ℘-function
(see, e.g., [Ahlf], p. 272, for a treatment)

℘(z) def=
1
z2

+
∑

0 
=λ∈Λ

(
1

(z − λ)2
− 1

λ2

)

Let us write x
def= ℘(z), and y

def= ℘′(z) (the derivative with respect to z). Then, as stated
in [Katz], Appendix C, §C5, the differentials

ω =
dx

y
and η

def=
x dx

y

define by integration

ω(λ) def=
∫

λ

ω; η(λ) def=
∫

λ

η

(for λ ∈ Λ) a basis of F = HomZ(Λ,C) = ΛC (where we use the fact that the cup pairing
on cohomology defines a natural isomorphism of Λ with its dual). Thus, in particular, we
can write

H ∼= (C · ω) ⊕ (C · η)

Moreover, although ω and η depend on the choice of isomorphism ωE
∼= C, this decompo-

sition does not. Thus, we get a natural splitting

κη : τE → H
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of the exact sequence 0 → ωE → H → τE → 0 (cf. the discussion preceding Proposition
1.3). Here, we shall often think of τE and H as the universal covering spaces of E and E†,
respectively.

Definition 3.4. We shall refer to κη as the η-splitting of H → τE .

Remark. The relationship of this splitting with the theory of this paper is as follows:
In [Katz], Appendix C, §C2, a certain natural algebraic rational section of the universal
extension is constructed. This section will be discussed from the point of view of the present
paper in §4 below. It is then shown in [Katz], Appendix C, §C6, that the Weierstrass ζ-
function may be thought of as the difference between this algebraic rational section and
the splitting of Definition 3.4. On the other hand, in the present paper, we will consider
(cf. §5 below) the difference between this algebraic rational section and the splitting of
Theorem 2.1. This difference will play an important role in the theory of the present
Chapter. Moreover, we would like to think of this difference – which we will refer to as
the Schottky-Weierstrass ζ-function – as being analogous to the classical Weierstrass ζ-
function. In fact, we shall see below in §5 that many of the important properties of the
Schottky-Weierstrass ζ-function are proven by arguments exactly analogous to those used
to prove the basic properties of the classical Weierstrass ζ-function. The reason for the
inclusion of the word “Schottky” here is that this “Schottky-Weierstrass ζ-function” is a
sort of Weierstrass ζ-function with respect to the Schottky uniformization Gm → E of E
(cf. the discussion surrounding Definition 3.3 above).

§4. Hodge-Theoretic Interpretation of the Universal Extension

In this §, we show how to interpret the universal extension as the Hodge-theoretic first
Chern class of a certain divisor. The material of this § follows immediately from (the
obvious logarithmic generalization of) [Falt], Lemma IV.4, but, for the convenience of the
reader, we give a self-contained treatment here. In particular, the theory of the present §
will allow us to give a functorial definition of the splitting of [Katz], Lemma C2.1, which
will play an important role in §5 below. In [Katz], by contrast, only an explicit definition
of this splitting in terms of certain “special functions” was given, without any explanation
of its functorial definition. In fact, for proving the results of §5 below, it will be important
to know the definition of this splitting in terms of special functions, but nonetheless it is
interesting to know that this splitting can be defined by means of abstract nonsense.

Let Clog → Slog be a log elliptic curve. Let

π1, π2 : C ×S E → E

be the projections to the first and second factors, and denote by E = ΔE ⊆ E ×S E ⊆
C ×S E the diagonal section. (Thus, ΔE is a (closed) divisor in C ×S E.) Let
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Z → C ×S E

be the torsor of relative logarithmic differentials (i.e., differentials with respect to the
logarithmic morphism πlog

2 : C log ×Slog Elog → Elog) that are regular everywhere, except
at the divisor ΔE, where they have a simple pole with residue 1. Thus, Z is an ωE |C×SE-
torsor (where we think of the differentials “ωE” as arising from the first factor of C ×S E)
on C×S E. Another way to think of Z is that it is the torsor defined by the Hodge-theoretic
first Chern class in

R1(π2)∗(C ×S E,ωE |C×SE)

of the divisor ΔE .

Similarly, let

Y → C ×S E

be the torsor of relative logarithmic differentials (i.e., differentials with respect to the
logarithmic morphism πlog

2 : C log ×Slog Elog → Elog) that are regular everywhere, except at
the divisor {e} × E ⊆ C ×S E, where they have a simple pole with residue 1. (Here, “e”
denotes the origin of E.) Thus, Y is an ωE |C×SE-torsor on C ×S E. Another way to think
of Z is that it is the torsor defined by the Hodge-theoretic first Chern class in

R1(π2)∗(C ×S E,ωE |C×SE)

of the divisor {e} × E ⊆ C ×S E. Note that in fact, Y is the pull-back to C ×S E via π1

of the torsor

Tor → C

which is the Hodge-theoretic first Chern class of the divisor {e} in C.

Let us denote by

ZΔ → E; YΔ → E

the restrictions of the torsors Z and Y to ΔE ⊆ C ×S E. Thus, ZΔ and YΔ are ωE |E-
torsors on E. Since the composite of E = ΔE ↪→ C ×S E with π1 is the natural inclusion
E ↪→ C, it follows that

YΔ = Tor|E
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i.e., the torsor associated to the Hodge-theoretic first Chern class of the divisor {e} in C.

On the other hand, we propose to show in the following that when 2 is invertible on
S, the torsor ZΔ is trivial, and, moreover that one can construct an explicit trivialization
of ZΔ: Let J be the sheaf of ideals on C ×S E that defines ΔE . Then we have an exact
sequence

0 → J 2/J 3 → J /J 3 → J /J 2 → 0

We will regard this exact sequence as an exact sequence of OE-modules via the action of
OE arising from the second factor of C ×S E. We would first like to show that this exact
sequence (of OE-modules) admits a natural splitting when 2 is invertible on S.

We construct this splitting as follows: First, observe that the isomorphism

C ×S E ∼= C ×S E

given by (α, β) �→ (α−β, β) (where α is a point of C, β a point of E, and we use the fact that
the group scheme E acts on C) maps ΔE ⊆ C×S E isomorphically onto {e}×E ⊆ C×S E.
Thus, if Ie ⊆ C is the sheaf of ideals defining {e} ⊆ C, then we have an exact sequence of
sheaves

0 → I2
e /I3

e → Ie/I3
e → Ie/I2

e → 0

of OS-modules such that the exact sequence of the preceding paragraph is the pull-back
via π1 : C ×S E → C of this exact sequence. Thus, it suffices to construct a splitting of
this exact sequence. To do this, we consider the automorphism “−1” on E, which extends
to an automorphism of C. This automorphism induces an automorphism α of the above
exact sequence (which covers the automorphism “−1” of C). Moreover, the automorphism
α is of order 2, and (as one sees easily by identifying Ie/I2

e with the cotangent space ωE

to C at e) induces multiplication by −1 (respectively, 1) on Ie/I2
e (respectively, I2

e /I3
e ).

Thus, the endomorphism 1
2 · (1− α) of the above exact sequence induces a splitting of the

above exact sequence, as desired.

Thus, we obtain a splitting

SJ : J /J 2 → J /J 3

of the exact sequence

0 → J 2/J 3 → J /J 3 → J /J 2 → 0

Now let s be a local section of J /J 2 in a (Zariski) neighborhood of ΔE . Then SJ (s) lifts
(noncanonically) to a local section t of J with a zero of order 1 at ΔE . Thus, if we form
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the logarithmic derivative dt
t of t (where we differentiate with respect to the first factor

of C ×S E), we get a differential which is regular in a neighborhood of ΔE , except that it
has a simple pole at ΔE with a residue of order 1. Thus, dt

t defines a section of Z over
this neighborhood. Moreover, one checks immediately that the restriction of this section
to ΔE is independent of the choice of s and t. Thus, we get a section

SΔ : E → ZΔ

of ZΔ which is globally defined over E. That is to say, we have proven the following:

Proposition 4.1. If 2 is invertible on S, then the torsor ZΔ → E admits a canonical
section SΔ : E → ZΔ (as defined above).

Next, let us observe that it follows from the definition of the universal extension E†
in §1 that the torsor

Z − Y

formed by taking the difference of the torsors Y and Z on C ×S E is trivial on the fibers of
π2 : C×S E → E, and, moreover, that the torsor Z−Y may thus be “pushed forward” via
π2 to form an ωE-torsor on E which is (by definition) equal to E† → E. In fact, because
Z − Y is trivial on the fibers of π2, it is in fact equal to the pull-back by π2 of the torsor
E† → E. In particular, since the composite of E = ΔE ↪→ C ×S E with π2 is the identity,
it follows that we have a natural equality of ωE-torsors on E:

ZΔ − YΔ = (Z − Y )|ΔE
= E†

Thus, by Proposition 4.1, we obtain that:

Theorem 4.2. If 2 is invertible on S, then there is a canonical isomorphism of ωE-
torsors on E

E† ∼= −Tor|E

between E† → E and −1 times the torsor associated to the Hodge-theoretic first Chern
class of the origin {e} ⊆ E.

Next, we would like to observe a certain consequence of Proposition 4.2:
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Corollary 4.3. Even if 2 is not invertible on S, the ωE |E-torsor E† → E extends

naturally to an ωE |C-torsor E
†
C → C. If Slog = (Mlog

1,0)Z, then this extension is unique.

Proof. We begin with the case where 2 is invertible. Then Theorem 4.2 implies that
E† → E is isomorphic −Tor|E , which is just the restriction to E ⊆ C of the torsor
−Tor → C. This proves extendability.

Next, we prove uniqueness in the case where Slog = (Mlog

1,0)Z. Write DS ⊆ S for the
divisor at infinity, and DC ⊆ C for the complement of E in C with the “reduced induced”
scheme structure. Thus, DC maps isomorphically down to DS , and DC

∼= DS
∼= Spec(Z).

Uniqueness then follows from the fact that DC has codimension 2 in C (which is a regular
algebraic stack).

Thus, it remains to prove extendability in the case where Slog = (Mlog

1,0)Z. Note that
(relative to the notation introduced in the preceding paragraph) there is a natural exact
sequence of “local cohomology groups”:

. . . → H1(C,ωE |C) → H1(E,ωE |E) → H2
DC

(C,ωE |C) → . . .

where H2
DC

denotes “cohomology with supports in DC .” On the other hand, it is well-
known that since the subscheme DC ⊆ C is a local complete intersection of codimension 2,
the cohomology module H2

DC
is flat over Z. (Indeed, this amounts to a well-known compu-

tation involving the Koszul complex (cf., e.g., [Mats]): If t1 and t2 are local parameters on
S at DC , then this cohomology is a direct limit of Z-modules of the form Z[t1, t2]/(tn1 , tn2 ),
as n → ∞.) Thus, it follows that the vanishing of the obstruction to extending E† to C
may be checked after restriction to Spec(Z[ 12 ]). This completes the proof of the corollary.
©

Remark. The reader may find it strange that despite the fact that we have shown the

torsors E
†
C → C and −Tor → C to be isomorphic after one inverts 2, we may not conclude

immediately that they are isomorphic even without inverting 2. The reason for this is the
possibility of the existence of 2-torsion in H1(S, ωE). In fact, we shall see later that the

isomorphism between E
†
C → C and −Tor → C does, in fact, fail to be integral at the prime

2 (cf. the Remark following Corollary 5.8).

Note that Corollary 4.3 thus implies that the vector bundle T considered in the dis-
cussion preceding Definition 2.3 extends naturally to a vector bundle TC on C that fits
into an exact sequence

0 → OC → TC → τE |C → 0

extending the exact sequence of loc. cit.
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Finally, we make the connection with the splitting of [Katz], Lemma C2.1. The point is
the following: The torsor −Tor → C is the torsor of differentials that are regular everywhere
except for a simple pole at the origin of residue −1. Thus, over

U
def= C − {e}

this torsor is just the torsor of global regular differentials. In particular, over U , it admits
a section given by the “zero differential.” Moreover, in a neighborhood of e, it is easy to
see that the zero differential, regarded as the sort of differential parametrized by −Tor, has
a pole of order 1 at e. Thus, we get a section

Sor : U → −Tor

with a pole of order 1 at the origin.

Now let us assume that 6 is invertible on S. Then one obtains two sections

S1,S2 : U → E
†
C

of the universal extension over U : the first is given by transporting Sor by means of
the isomorphism of Theorem 4.2; the second is that of [Katz], Lemma C2.1. To review,
this section of [Katz] is defined as follows: For an elliptic curve defined by the equation
y2 = 4x3−g2x−g3, the section S2 is defined by associating to a point P of U the differential

y + y(P )
2{x − x(P )} · dx

y

(which is regular everywhere except at e and P , and has residues −1 at e and +1 at P ).
In fact, strictly speaking, Katz only defines this section for smooth C → S, but one checks
easily that the above definition defines a section for arbitrary C. Moreover, both sections
have a pole of order 1 at e. Indeed, this follows immediately from the definition for S1; for
S2, it follows from, say, [Katz], Theorem C6, (2). Thus, their difference defines a section

δ ∈ Γ(C,ωE |C(e))

We would like to show that δ = 0. To do this, it suffices to consider the universal case:
i.e., Slog = Mlog

1,0 ⊗Z Z[16 ]. Then it follows immediately from an elementary application of
Riemann-Roch on the fibers of C → S that δ in fact lies in Γ(C,ωE |C) = Γ(S, ωE). On
the other hand, it is well-known (cf., e.g., [KM], p. 227) that Γ(S, ωE) = 0. Thus, δ = 0,
as desired. In other words, we have proven the following result:

Corollary 4.4. Suppose that 6 is invertible on S. Then the isomorphism −Tor
∼= E

†
C

maps the section Sor : C−{e} → −Tor defined above to the section of [Katz], Lemma C2.1.
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In particular, the section of [Katz], Lemma C2.1, defines a unique section C −{e} → E
†
C ,

even when 6 is not invertible.

§5. Analytic Continuation of the Canonical Splitting

The purpose of this § is to show that the canonical splitting κ of Theorem 2.1 may
be “analytically continued” to a splitting in the category of “entire functions” on the uni-
formization of a degenerating elliptic curve in the sense of [Mumf] (i.e., the formal algebraic
analogue of the Schottky uniformization). Although this splitting will not be periodic, it
will satisfy a simple rule with respect to the period of the degenerating elliptic curve (i.e.,
shifting by a period affects the splitting by adding a constant). In order to analyze this
splitting, we will also use the splitting Sor of Corollary 4.4. The difference between κ
and Sor will be a sort of Weierstrass ζ-function with respect to the Schottky uniformiza-
tion. Thus, we will refer to it as a Schottky-Weierstrass ζ-function. We will discuss this
ζ-function (as well as its “close relatives”) in more detail in §6, 7 below. In the present §,
we show how to translate the material of [Katz], Appendix C, §C6, C7 into the context of
Mumford’s construction. Although, strictly speaking, this Schottky version of the theory
of [Katz], Appendix C, §C6, C7, is not logically necessary for the proofs of the main results
of the present § (or, for that matter, of the present paper), we present it here nevertheless
because we feel it to be both interesting and generally culturally relevant to what we do
discuss here. Also, we remark that “in principle,” what we discuss here is “well-known,”
but I do not know an adequate reference for it.

We begin by reviewing the set-up in [Mumf], especially [Mumf], §5. To do this, we
must introduce some notation. Let K be a finite extension of Q, and let OK be its ring
of integers. In this §, we let

O

be a Zariski localization of OK , i.e., a ring such that Spec(O) is an open subscheme of
Spec(OK). Let

A
def= O[[q]]; S

def= Spec(A)

(where q is an indeterminate). Moreover, we equip S with the log structure defined by the
divisor D

def= V (q) ⊆ S. Let Ŝ be the formal scheme obtained by regarding O[[q]] as a
topological ring with the q-adic topology. Let

E → S
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be the semi-abelian scheme obtain by forming the quotient of Gm by the period “q” (as
in [Mumf] or [FC], Chapter III). Then E → S arises in a natural way from a log elliptic
curve C log → Slog. Let us write

LC
def= OC(e); LE

def= LC |E

(where e is the divisor defined by the identity section).

Next, we would like to consider various kinds of analytic functions. First, recall that
we have a natural identification

E
Ŝ

= (Gm)
Ŝ

Let us write Ran
E for the coordinate ring of E

Ŝ
. Thus, one can think of Ran

E as:

Ran
E = A{{U,U−1}}

i.e., Laurent series with coefficients converging to zero in A. Let us write

Ralg
E ⊆ Ran

E [θ]; (respectively, R′E ⊆ Ran
E [θ])

where θ is an indeterminate, for the A-subalgebra of Ran
E [θ] generated (respectively, gen-

erated q-adically) by the elements

{qk2+k · U2k+1 · θ, qk2 · U2k · θ, qk2−k · U2k−1 · θ}

where k ranges over all elements of Z. That is to say, Ralg
E (along with its q-adic completion

R′E) is the ring “Rφ,Σ” used by Mumford (cf. [Mumf], p. 306) to construct E as a quotient
of Gm. In this context, it is natural to think of Ran

E [θ], Ralg
E and R′E as graded rings, in

which elements of Ran
E have degree zero and θ has degree one.

Next, recall from the theory of [Mumf] that there is a natural action of Z on

C∞
def= Proj(Ralg

E ) and C∞
Ŝ

def= Proj(R′E)

defined by letting 1 ∈ Z act by:

U �→ q · U ; θ �→ q · U2 · θ

In the following, we shall denote this group of automorphisms by

Zet
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Thus, we shall identify the elements of Zet with Z and write, for instance, “1et ∈ Zet,” but
we prefer to use the notation Zet for the group of automorphisms, in order to distinguish
it from, for instance, Z regarded as a subring of O.

Now it follows from the theory of [Mumf] that in our notation C
Ŝ

is formed by taking
the quotient of C∞

Ŝ
by this action of Zet. In fact, the special fiber

(C∞)spl = (C∞
Ŝ

)spl

(i.e., fiber over V (q) ⊆ S) of C∞ is an infinite chain of P1’s, connected to each other at
“0” and “∞.” Thus, each irreducible component of (C∞)spl is a copy P1, labeled by an
element of Zet. The action of Zet on the irreducible components (thought of relative to
this labeling) is just the action of Zet on Zet by addition. (See [Mumf] for more details.)
Another way to think of C∞ is as a sort of Néron model for Gm over S relative to the open
immersion S−V (q) ⊆ S. Thus, the irreducible components of the special fiber correspond
naturally to the q-adic orders of elements of A[q−1].

Relative to the point of view of [Mumf] (cf. especially [Mumf], p. 289), the ample line
bundle “O(1)” on C∞

Ŝ
obtained by regarding R′E as a graded ring (as discussed above) may

be identified in a natural fashion with the pull-back (relative to the quotient C∞
Ŝ

→ C
Ŝ
)

L⊗2
C∞

Ŝ

to C∞
Ŝ

of L⊗2
C . Thus, the elements of R′E of degree i define sections of L⊗2i

C∞
Ŝ

over C∞
Ŝ

.

Conversely, I claim that all sections of L⊗2i
C∞

Ŝ

over C∞
Ŝ

arise in this way. Indeed, it suffices

to note that:

(1) The global sections of L⊗2i
C∞

Ŝ

over the irreducible component of (C∞)spl

marked “0” are spanned over O by the restrictions to this irreducible
component of the sections

U−i · θi, U−i+1 · θi, . . . , θi, U i−1 · θi, U i · θi

(2) The sections

U−i+1 · θi, U−i+2 · θi, . . . , θi, U i−1 · θi, U i · θi

all vanish when restricted to any irreducible component of (C∞)spl that
lies on the same side of the component marked 0 as the point U = 0 of
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the components marked 0. (Indeed, acting on any of these sections by
a positive integer ∈ Zet sends these sections to zero modulo q.)

By translating these two observations over to the other irreducible components of C∞spl,
one sees easily that one may construct arbitrary sections of L⊗2i

(C∞)spl
over (C∞)spl by means

of elements in R′E . This completes the proof of the claim. Thus, in summary,

Γ(C∞
Ŝ

,L⊗2i
C∞

Ŝ

) = degree i portion of R′E

Put another way, θ defines a trivialization of the line bundle L⊗2
C∞

Ŝ

over E
Ŝ

= (Gm)
Ŝ

with respect to which global sections may be written as certain Laurent series in U whose
coefficients (∈ A) decay fairly rapidly.

In particular, suppose that σalg ∈ Γ(C,LC) is the section given by the embedding
OC ↪→ OC(e) = LC . Then, by restricting σalg to C∞

Ŝ
, we can write its square (σalg)2

analytically as some element

(σalg)2|C∞
Ŝ

= (σan)2 · θ ∈ R′E

where (σan)2 ∈ Ran
E is some (topological) A-linear combination of the elements

{qk2+k · U2k+1, qk2 · U2k, qk2−k · U2k−1}{k∈Z}

The advantage of working with (σan)2 is that it is an explicit Laurent series. For conve-
nience, in the following, we shall often write just σ2 for (σan)2. In terms of normalizations
of σalg (relative to multiplication by elements of A×), we would like to think of σalg as
being chosen so that the square differential at the origin e of E determined by σ2 (which
has a zero of order 2 at the origin) is equal to (d log(U))2.

Next, let

Rmer
C∞

Ŝ

denote the ring of meromorphic functions on C∞
Ŝ

. By this, we mean those functions which
can, Zariski locally on the formal scheme C∞

Ŝ
, be written as a quotient of a regular function

(i.e., a section of OC∞
Ŝ

) by a nonzero regular function. Thus, the zeroes and poles of a

meromorphic function on C∞
Ŝ

have finite order. Note, further, that we have a natural
injection

Rmer
C∞

Ŝ

↪→ Q(Ran
E )
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(where “Q” denotes “the quotient field of”). Indeed, the fact that this morphism is an
injection follows by considering the situation at the nodes of C∞

Ŝ
, where this injectivity

essentially amounts to the fact that the natural map

O[[X,Y ]] → (O[[X]](X−1))[[Y ]]

(where X and Y are indeterminates) from power series over O in X and Y to power series
in Y with coefficients in O[[X]](X−1) is injective.

Observe that if f is a function on C∞
Ŝ

which can be written as a quotient of a (regular)
section of L⊗2N over C∞

Ŝ
by a nonzero (regular) section of L⊗2N over C∞

Ŝ
(for some N),

then

f ∈ Rmer
C∞

Ŝ

For instance, since both θ (�= 0) and σ2 · θ are regular sections of L2 over C∞
Ŝ

, it follows
that

σ2 = (σ2 · θ) · θ−1 ∈ Rmer
C∞

Ŝ

Finally, if φ ∈ Rmer
C∞

Ŝ

, let us write

φ′
def= U

∂φ

∂U

Note that since φ ∈ Rmer
C∞

Ŝ

, we also have φ′ ∈ Rmer
C∞

Ŝ

.

Next, we would like to make use of the Weierstrass normal form of the elliptic curve
E (as in [Katz], §C2). That is to say, we fix the differential

d log(U) =
dU

U

and take the resulting rational functions x and y on E such that dx/y = d log(U) (as in
[Katz], §C2). Thus, the elliptic curve E is defined by the equation

y2 = 4x3 − g2x − g3

where the zero section e is the point at infinity (of the affine curve define by this equation).
In order to do this, one must assume that 6−1 ∈ O. Thus, for the rest of this §, until stated
otherwise, we shall assume that 6−1 ∈ O. (We will state explicitly (after Proposition 4.5)
when this assumption is no longer in force.)
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Thus, x is a rational function on C with the following properties:

(i) x has a pole of order two at the origin, and no other poles;

(ii) x is even;

(iii) the section of τ⊗2
E defined by looking at the “leading term” of x at

the origin is equal to (U ∂
∂U )2.

Moreover, y is the rational function on C given by U ∂x
∂U . (Note that since the derivation

U ∂
∂U is algebraic, this statement makes sense in the algebraic category despite the fact

that “U” is only defined analytically.) Then, by analogy with the classical complex theory
(see, e.g., [Ahlf], p. 272), we write

℘ and ℘′

for the analytic representations (i.e., elements of Rmer
C∞

Ŝ

) of x and y, respectively. Also, we

write

ζ
def= (σ2)′/(2 · σ2) ∈ Rmer

C∞
Ŝ

for the analogue of the classical Weierstrass ζ-function. Note that since σ2 is even, while
U ∂

∂U is odd, it follows that ζ is an odd function. Also, note that since σ2 has a zero of
order 2 at the origin e, it follows that ζ · d log(U) has a simple pole at the origin e whose
residue is 1. In fact, modulo q, it is easy to compute ζ explicitly: Indeed, modulo q, σ2 is
equal to a unit multiple of U − 2 +U−1 (compare zero loci!), so we obtain that (modulo q)

ζ · d log(U) ≡ 1
2
· d log(U − 2 + U−1) =

dU

U − 1
− 1

2
d log(U) =

{ U

U − 1
− 1

2

}
· d log(U)

In particular, we see that the meromorphic function ζ is regular (i.e., does not have a pole)
at the nodes U = 0,∞ of the component of (C∞

Ŝ
)spl marked 0.

Note that the action of Zet on ζ may be determined as follows: 1et ∈ Zet acts on θ
by:

θ �→ q · U2 · θ

Since σ2 · θ is pulled back from C
Ŝ
, it thus follows that 1et ∈ Zet fixes σ2 · θ. In particular,

the action of 1et ∈ Zet on σ2 is given by:
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σ2 �→ q−1 · U−2 · σ2

This allows us to conclude that the action of 1et ∈ Zet on 1
2 times the logarithmic derivative

of σ2, i.e., on ζ, is given by:

ζ �→ ζ − 1

Observe that this shows, in particular, that ζ is regular except at the orbit

ẽ
def= Zet(e) ⊆ C∞

Ŝ

of e under the action of Zet, where it is has a pole of order one.

Next, we would like to check that certain classical formulas concerning the various
functions just defined hold in the present context, as well. First of all, let us observe that
the general nonsense concerning meromorphic functions on C∞

Ŝ
can be extended to the

product C∞
Ŝ

×
Ŝ

C∞
Ŝ

, as well. We leave the formulation of this general nonsense to the
reader. Now let us write

μ, π1, π2 : E
Ŝ
×

Ŝ
E

Ŝ
→ E

Ŝ

for the obvious multiplication and projection maps, respectively. Write

ν : E
Ŝ
×

Ŝ
E

Ŝ
→ E

Ŝ

for the map given by (α, β) �→ α−β. Then we have the following analogue of a well-known
classical formula:

Proposition 5.1. One has an equality

(−π∗1℘ + π∗2℘)2 =
(μ∗σ2) · (ν∗σ2)
(π∗1σ4) · (π∗2σ4)

of meromorphic functions on C∞
Ŝ

×
Ŝ

C∞
Ŝ

.

Proof. The proof is entirely similar to that in the classical case. Namely, one uses the
cubical structure on L def= LC |E

Ŝ

to first deduce the corresponding (natural) isomorphism
of line bundles: Indeed, if
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B def= (μ∗L) ⊗ (π∗1L)−1 ⊗ (π∗2L)−1

is the corresponding Gm-biextension on the E ×S E (cf. [MB] for more on cubical struc-
tures), then one has a natural isomorphism

OE×SE
∼= B ⊗

(
idE × (−idE)

)∗B
= (μ∗L) ⊗ (ν∗L) ⊗ (π∗1L)⊗−2 ⊗ (π∗2L)⊗−2

Taking the “square” of this isomorphism shows that both sides of the desired equality can
be naturally (i.e., algebraically without enlisting the aid of the trivialization θ) regarded as
rational functions on E ×S E. Note that here, we use the fact that the trivialization θ is
compatible with the cubical structure on L (which follows from the theory of [Mumf]; [FC],
Chapter III). Next, observe that since ℘ is an even function, the left-hand side has zeroes
of order 2 at μ−1(e) and ν−1(e). Moreover, the left-hand side has poles only at π−1

1 (e) and
π−1

2 (e), and these poles are both of order 4. Since this enumeration exhausts all the poles
and zeroes of the right-hand side, we thus conclude that the desired equality holds up to
muliplication by a unit of A. In fact, for our purposes, this will be sufficient, but one can
check that this unit must be = 1 be looking at the leading term at the origin. ©

Proposition 5.2. One has an equality

1
2

π∗1℘′ − π∗2℘′

π∗1℘ − π∗2℘
= (μ∗ζ) − (π∗1ζ) − (π∗2ζ)

of meromorphic functions on C∞
Ŝ

×
Ŝ

C∞
Ŝ

.

Proof. The proof is entirely similar to that in the classical case: Namely, one takes the
logarithmic derivative of both sides of the equality of Proposition 5.1 with respect to the
derivation π∗1(U ∂

∂U ) + π∗2(U ∂
∂U ), and then divides by 4. Note here that the push-forward

of this derivation with respect to μ (respectively, ν) is equal to 2 · (U ∂
∂U ) (respectively, 0).

©

Next, we would like to prove the analogue of Theorem C6 of [Katz]. The analogue
of the first part of this theorem (i.e., Theorem C6, (1)) consists of making explicit the
differentials defined by the canonical splitting in terms of the special function ζ. Recall
that over D, we already did this (i.e., wrote down the differential “ωx” explicitly) in our
construction of κ (cf. the discussion preceding Theorem 2.1). Thus, we would like to
extend this discussion to the situation over Ŝ.

To do this, let α ∈ Gm(Ŝ) be a point of E
Ŝ
. Write
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Tα : E
Ŝ
→ E

Ŝ

for the morphism given by translating by α. Then let us consider the differential (on E
Ŝ
)

defined by

ωα
def=
(
T ∗α−1(ζ) − ζ

)
· d log(U)

Note that since ζ · d log(U) has a simple pole with residue 1 at e, the differential ωα

has a simple pole with residue 1 (respectively, −1) at α (respectively, e). Clearly, the
correspondence α �→ ωα is functorial in α. Moreover, we have the following

Lemma 5.3. The differential ωα is algebraic in the sense that it arises from a meromor-
phic differential on C. Moreover, this meromorphic differential on C has no poles except
at α and e.

Proof. Indeed, 1et ∈ Zet acts on both ζ and its translate T ∗α−1(ζ) by adding −1. Thus,
1et ∈ Zet stabilizes ωα. This implies that ωα descends to an algebraic meromorpic differ-
ential on C. The description of the poles of ωα follows from the description of the poles of
ζ given in the above discussion. ©

Next, let us observe that (for α, β ∈ Gm(Ŝ) = E
Ŝ
(Ŝ)) the meromorphic function

(T ∗α−1σ2) · (T ∗β−1σ2)

(T ∗α−1·β−1σ2) · σ2

on C∞
Ŝ

is “algebraic,” i.e., arises from a meromorphic function on E. This follows imme-
diately (cf. the use of cubical structures in the proof of Proposition 5.1) from the fact that
the corresponding line bundle

(T ∗α−1L) ⊗ (T ∗β−1L) ⊗ (T ∗α−1·β−1L)−1 ⊗ L−1

(and hence also its square) is trivial. On the other hand, if we then take the logarithmic
derivative of this rational function (with respect to the derivation U ∂

∂U ) and multiply by
1
2 · d log(U), we obtain

ωα + ωβ − ωα·β

This implies (cf. the discussion preceding Theorem 2.1) that the correspondence α �→ ωα

defines a homomorphism of E
Ŝ

into E
†
Ŝ
. By the uniqueness statement in Theorem 2.1, we

thus conclude the following Schottky analogue of [Katz], Theorem C6, (1):
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Theorem 5.4. The splitting κ : E
Ŝ
→ E

†
Ŝ

of Theorem 2.1 is the splitting defined by the
correspondence

α �→ ωα
def=
(
T ∗α−1(ζ) − ζ

)
· d log(U)

for α ∈ E
Ŝ
(Ŝ).

Next, we would like to move on to proving the analogue of the second part of Theorem
C6 of [Katz]. First, let us recall the exact sequence

0 → OC → TC → τE |C → 0

considered in the discussion following Corollary 4.3. If we tensor this exact sequence with
ωE ⊗OS

L⊗2
C , we obtain an exact sequence

0 → ωE ⊗ L⊗2
C → T ′ → L⊗2

C → 0

Now let us recall the section

Sor : C − e → −Tor
∼= E

†
C

of Corollary 4.4. Since this section has a pole of order precisely 1 (≤ 2) at e, it follows
from the definition of TC that it defines a lifting

ξalg ∈ Γ(C,T ′)

of the section (σalg)2 ∈ Γ(E,L⊗2
E ). Now let us write ξalg in terms of its components relative

to the canonical splitting (cf. Definition 2.3):

(ξ[0] · θ, ξ[1] · θ)

(Here, by trivializing ωE by means of the section U ∂
∂U , we may regard ξ[0] as a function,

rather than just a section of ωE |E
Ŝ

.) Thus, by definition,

ξ[1] = σ2

We would like to compute ξ[0]. In fact, one has the following:

Proposition 5.5. We have ξ[0] = 1
2 (σ2)′.
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Proof. The proof of the equality ξ[0] = 1
2 (σ2)′ is entirely formally analogous to the

proof of the second part of [Katz], Theorem C6. Namely, it is a formal consequence of
Proposition 5.2. Indeed, if α ∈ E

Ŝ
(Ŝ) = Gm(Ŝ), then ξ[0] is the unique function such

that adding (σ−2 · ξ[0])(α) to the canonical splitting κ(α) of Theorem 2.1 gives rise to the
splitting Sor(α) over α. But by Corollary 4.4 (and the explicit form of Sor in terms of x
and y reviewed in the discussion preceding Corollary 4.4), this splitting Sor(α) corresponds
to the meromorphic differential

y + y(α)
2{x − x(α)} · d log(U)

while by Theorem 5.4, the meromorphic differential given by adding (σ−2 · ξ[0])(α) to the
canonical splitting κ(α) of Theorem 2.1 is precisely

ωα + (σ−2 · ξ[0])(α) · d log(U) = {ζ(α−1 · U) − ζ(U) + σ(α)−2(ξ[0])(α)} · d log(U)

Since y is an odd function, while x is even, it thus follows from Proposition 5.2 that these
two expressions are equal precisely when σ−2 · ξ[0] = ζ, i.e., ξ[0] = 1

2 (σ2)′, as desired. ©

Now let us recall that ζ = (σ2)′

2·σ2 defines a meromorphic function on C∞
Ŝ

with a pole of
order 1 at the origin e. Next, note that since the meromorphic splitting Sor is defined over

C
Ŝ
, its pull-back to C∞

Ŝ
is a meromorphic splitting of E

†
C |C∞

Ŝ

over C∞
Ŝ

which is regular

away from ẽ. On the other hand, it follows from Proposition 5.5 that the canonical splitting
κ over E

Ŝ
is equal to the difference between Sor|E

Ŝ

and ζ · d log(U)|E
Ŝ

. Thus, it follows

that the canonical splitting κ extends to a meromorphic splitting of E
†
C |C∞

Ŝ

.

Next, let us observe that the natural action of Zet on C∞
Ŝ

and E
†
C |C∞

Ŝ

fixes Sor (since

Sor is obtained by pull-back from C
Ŝ
). The action of Zet on the meromorphic extension

over C∞
Ŝ

of κ may thus be determined by looking at the action of Zet on the difference
between this meromorphic extension and Sor|C∞

Ŝ

, i.e., the action of Zet on ζ. Moreover, as

computed above, the action of 1et ∈ Zet on ζ is given by:

ζ �→ ζ − 1

Thus, the action of 1et ∈ Zet on the meromorphic extension of κ (which is, roughly
speaking, just “Sor − ζ”) over C∞

Ŝ
is given by:

κ �→ κ + d log(U)
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In particular, since we know that ζ and Sor|C∞
Ŝ

are regular everywhere except ẽ, while κ

is regular at e ∈ E
Ŝ
(Ŝ) ⊆ C∞

Ŝ
(Ŝ), we conclude that the meromorphic extension of κ over

C∞
Ŝ

is, in fact, regular over all of C∞
Ŝ

. In other words, we have proven the following:

Theorem 5.6. The canonical section κ of Theorem 2.1 extends to a (regular) section of

E
†
C |C∞

Ŝ

over C∞
Ŝ

. By abuse of notation, we also denote this (unique) extension of κ by κ.

The action of 1et ∈ Zet on C∞
Ŝ

induces the following action on κ:

κ �→ κ + d log(U)

The difference between κ and the pull-back to C∞
Ŝ

of the section Sor of Corollary 4.4 is

given by the function ζ
def= (σ2)′

2·σ2 , which is meromorphic on C∞
Ŝ

, and regular everywhere on
C∞

Ŝ
except for a pole of order 1 on ẽ (the Zet-orbit of the origin of E

Ŝ
). The action of

1et ∈ Zet on ζ is given by ζ �→ ζ − 1. Finally, the section κ of E
†
C |C∞

Ŝ

may also be thought

of (relative to the isomorphism of Theorem 4.2) as (−1
2 times) the section associated to

the unique connection on L⊗2
C∞

Ŝ

for which the section θ is horizontal.

Proof. It remains to prove the final assertion concerning the connection. Let us denote
this connection by ∇. Then

∇(σ · θ) = 2 · ζ · (σ · θ) · d log(U)

Since σ · θ is nonzero everywhere on C∞
Ŝ

except ẽ, it thus follows that the connection ∇ is
regular everywhere on C∞

Ŝ
, except possibly at ẽ. On the other hand, since 1et(θ) = q ·U2 ·θ,

it follows that 1et(∇) = ∇ − 2; hence that ∇ (which we know to be regular at e) is also

regular over all of ẽ, hence over all of C∞
Ŝ

. Thus, ∇ defines a regular section κ∇ of E
†
C |C∞

Ŝ

which satisfies 1et(κ∇) = κ∇ + 1. In particular, κ − κ∇ ∈ Γ(C∞
Ŝ

, ωE |C∞
Ŝ

) = ωE , i.e., the

difference κ − κ∇ is constant. Now we consider the automorphism α of C∞
Ŝ

induced by
“multiplication by −1” on E. Note that since α(σ ·θ) = σ ·θ, the above formula for ∇(σ ·θ)
shows that α(∇) = ∇. Thus, (since the isomorphism of Theorem 4.2 is compatible with
the automorphism α) we obtain that the differential κ − κ∇ ∈ ωE = A · d log(U) is fixed
by α. On the other hand, since α(d log(U)) = −d log(U), this implies that κ− κ∇ = 0, as
desired. ©
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Corollary 5.7. The canonical section κ induces an isomorphism:

E
†
C |C∞

Ŝ

∼= W
Ŝ
×

Ŝ
C∞

Ŝ

(where W
Ŝ

is the geometric object corresponding to the line bundle ωE |Ŝ on the formal

scheme Ŝ). Moreover, relative to this isomorphism, the quotient E
†
C |C∞

Ŝ

→ E
†
C is given by

the action of Zet on W ×S C∞
Ŝ

defined by taking the product of the usual action of Zet on
C∞

Ŝ
with the action of Zet on W given by letting 1 act as addition by d log(U).

Corollary 5.8. The components (cf. Definition 2.3) of any section ∈ Γ(E†
C ,L⊗2i

C |
E
†
C

)

with respect to the canonical splitting κ of Theorem 2.1 form elements of R′E of degree i.

Remark. Note that the assertions of Theorem 5.6 and Corollaries 5.7, 5.8 may be checked
after inverting 6, so in fact, these results are all valid even if one does not invert 6. On
the other hand, as computed above, modulo q, we have:

ζ ≡ 1
2
· d log(U − 2 + U−1) =

dU

U − 1
− 1

2
d log(U)

i.e., ζ itself fails to be integral at the prime 2. Since the sections κ (cf. Theorem 2.1) and
Sor (cf. the discussion preceding Corollary 4.4) are integral at 2, and ζ is precisely the
difference between these two sections relative to the isomorphism of Theorem 4.2, it thus

follows that the isomorphism between E
†
C → C and −Tor → C (cf. Theorem 4.2) is not

integral at 2.

Finally, before proceeding, we apply the theory developed thus far to obtain explicit
information concerning liftings of torsion points of E to E† (cf. Remark 1 following
Definition 3.2). First, observe that since E

Ŝ
is essentially obtained by dividing Gm by

the action of Zet obtained by multiplying Gm powers of the period q, it follows that the
inverse images of the torsion points of E

Ŝ
in C∞

Ŝ
are the points the form:

α · qβ ∈ Gm(A[qβ , q−1]) = C∞(A[qβ ]) = C∞
Ŝ

(A[qβ ])

where “Gm(∼ [q−1]) = C∞(∼)” follows from the “Néron model-like” property of C∞,
referred to earlier; α is a root of unity ∈ A; and β ∈ Q. On the other hand, by Corollary

5.7, E
†
Ŝ

is essentially obtained by dividing the abelian object by W × Gm by the action
of Zet obtained by adding/multiplying multiples of the element (d log(U), q). We thus
conclude the following:
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Corollary 5.9. Relative to the isomorphism

E
†
C |C∞

Ŝ

∼= W
Ŝ
×

Ŝ
C∞

Ŝ

of Corollary 5.7, the inverse images of the torsion points of E† are precisely the points
whose coordinates (on the right-hand side of the above isomorphism) are given by

(β · d log(U), α · qβ)

where α is a root of unity ∈ A×; and β ∈ Q.

Thus, in particular, torsion points of order N will, in general, have coordinates with
denominator N .

§6. Higher Schottky-Weierstrass Zeta Functions

In this §, we define a new integral structure on the universal extension of a degen-
erating elliptic curve at finite primes. Using this new integral structure, we construct
“higher” analogues of the Schottky-Weierstrass zeta function considered in §5. These higher
Schottky-Weierstrass zeta functions (together with their twisted analogues, to be discussed
in Chapter IV) will play a fundamental role in this paper.

We work with the notation of §5. Thus, let O be a Zariski localization of OK , where
K is a finite extension of Q. Let

A
def= O[[q]]; S

def= Spec(A)

Then we have a one-dimensional semi-abelian scheme

E → S

over S. Roughly speaking, one may think of E as being “Gm/qZ.” More rigorously, E
may be compactified to a log elliptic curve C log → Slog. Moreover, C

Ŝ
(the result of base

changing C to the q-adic completion Ŝ of S) may be written as

C
Ŝ

= C∞
Ŝ

/Zet

Next, let us recall the contents of Theorem 5.6, and its corollaries. First of all, the
universal extension E† → E of E extends naturally (cf. Corollary 4.3) to a WE-torsor
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E
†
C → C. (Here, WE → S is the geometric line bundle defined by the invertible sheaf ωE

on S, i.e., it is the object denoted “W” in §2.) Then Theorem 5.6, Corollary 5.9 state that
we have a natural isomorphism

E
†
C |C∞

Ŝ

∼= (WE)
Ŝ
×

Ŝ
C∞

Ŝ

relative to which the quotient E
†
C |C∞

Ŝ

→ E
†
C of the left-hand side corresponds to the

quotient by the subgroup generated by

(d log(U), q)

on the right-hand side. In the following, we shall identify E
†
C |C∞

Ŝ

with (WE)
Ŝ
×

Ŝ
C∞

Ŝ
via

this isomorphism. Moreover, (to simplify the notation) we shall trivialize ωE by means of
the section d log(U). Thus, we may write

WE = Spec(OS [T ])

(where T is the indeterminate corresponding to the chosen trivialization of ωE).

Next, let us write (for n ∈ Z≥0)

T [n] def=
1
n!

T (T − 1)(T − 2) · . . . · (T − (n − 1))

which we think of as a section of OWE
⊗ Q. For negative n, we let T [n] def= 0. Thus, we

have

T [0] = 1; T [1] = T ; T [2] =
1
2
T (T − 1)

Also, if f(T ) is a section of OWE
⊗ Q, let us write f(T + n) for the result of applying to

f(T ) the automorphism of WE induced by net ∈ Zet, i.e., the automorphism defined by
T �→ T + n. Thus, in particular, we may define:

δ(f) def= f(T + 1) − f(T )

Then we have

δ(T [n]) = T [n−1]

Now we are ready to define new integral structures. First of all, let us write
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R
E
†
C
|C∞

Ŝ

for the push-forward via E
†
C |C∞

Ŝ

→ C∞
Ŝ

of the structure sheaf O
E
†
C
|C∞

Ŝ

. Then we would

like to define a new integral structure on R
E
†
C
|C∞

Ŝ

⊗Q as follows: By the above discussion,

the sheaf of algebras R
E
†
C
|C∞

Ŝ

on C∞
Ŝ

may be identified with

OC∞
Ŝ

⊗OS
OS [T ] = OC∞

Ŝ

⊗OS

(⊕
n≥0

OS · Tn
)

Then the new integral structure will be given by the sheaf

OC∞
Ŝ

⊗OS

(⊕
n≥0

OS · T [n]
)

Let us denote by

Ret

E
†
C
|C∞

Ŝ

⊆ R
E
†
C
|C∞

Ŝ

⊗Q

the corresponding subsheaf of R
E
†
C
|C∞

Ŝ

⊗Q. Note that Ret

E
†
C
|C∞

Ŝ

has a natural filtration

. . . ⊆ Fn(Ret

E
†
C
|C∞

Ŝ

) ⊆ . . . ⊆ Ret

E
†
C
|C∞

Ŝ

whose n-th member is given by the polynomials of degree < n. Thus, Fn(Ret

E
†
C
|C∞

Ŝ

) is a

vector bundle on C∞
Ŝ

of rank n such that we have a natural identification

(Fn+1/F n)(Ret

E
†
C
|C∞

Ŝ

) =
1
n!

· OC∞
Ŝ

⊗OS
τ⊗n
E

Moreover, let us observe that the filtered OC∞
Ŝ

-submodule Ret

E
†
C
|C∞

Ŝ

⊆ R
E
†
C
|C∞

Ŝ

⊗ Q is

preserved by the natural action of Zet on C∞
Ŝ

. Indeed, 1et ∈ Zet maps f(T ) def= T [n] to
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f(T +1) = f(T )+δ(f) = f(T )+T [n−1]. Since T [n−1] also forms a section of Ret

E
†
C
|C∞

Ŝ

, and

Ret

E
†
C
|C∞

Ŝ

is an OC∞
Ŝ

-module (hence closed under addition), we thus conclude that Ret

E
†
C
|C∞

Ŝ

(as well as its filtration) is stabilized by the action of Zet, as desired. We summarize this
as follows:

Proposition 6.1. The OC∞
Ŝ

-submodules

. . . ⊆ Fn(Ret

E
†
C
|C∞

Ŝ

) ⊆ . . . ⊆ Ret

E
†
C
|C∞

Ŝ

⊆ R
E
†
C
|C∞

Ŝ

⊗Q

are all preserved by the natural action of Zet. Thus, they descend to form natural OC-
submodules

. . . ⊆ Fn(Ret

E
†
C

) ⊆ . . . ⊆ Ret

E
†
C

⊆ R
E
†
C

⊗Q

where the subsheaf Fn(Ret

E
†
C

) of the filtration is a rank n vector bundle on C such that

(Fn+1/F n)(Ret

E
†
C

) = 1
n! · OC ⊗OS

τ⊗n
E .

Proof. It remains only to check that the various sheaves that were constructed on C∞
Ŝ

do
indeed descend to C. That is to say, since the covering C∞

Ŝ
→ C

Ŝ
is infinite, the reader

may fear that one cannot immediately apply the usual machinery of étale descent. In fact,
however, this is not a problem since C

Ŝ
admits a (finite) Zariski open cover {U} (in the

category of formal Ŝ-schemes) such that over each U , the covering C∞
Ŝ

→ C
Ŝ

splits. Thus,
there is no problem with descent. ©

Definition 6.2. The integral structures denoted by a superscript “et” will be referred to
as étale-integral, or et-integral, structures. That is to say, “et” stands for “étale,” and is
the same as the “et” in Zet. In particular, the “étale-integral structure” may be thought
of as the integral structure arising from thinking of algebraic functions on the universal
extension as set-theoretic functions on Zet, i.e., on the fibers of the infinite étale covering
C∞

Ŝ
→ C∞

Ŝ
/Zet = C

Ŝ
.

The original integral structure on the various “R’s” (i.e., the integral structures with-
out a label) will be referred to as the de Rham-integral, or DR-integral, structures. This is
because they arise from the original natural integral structures on the universal extension
E† as a sort of de Rham cohomology – i.e., “H1

DR(E,O×E )” – associated to E.
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Now we are ready to begin the construction of the higher Schottky-Weierstrass zeta
functions. In the following, we shall refer to polynomials

φrT
[r] + φr−1T

[r−1] + . . . + φ0

(where r is a natural number) whose coefficients φ0, . . . , φr are meromorphic functions on
C∞

Ŝ
as extension polynomials. One may also think of extension polynomials as meromor-

phic sections of Ret

E
†
C

over C∞
Ŝ

. We would like to consider those extension polynomials

which are invariant under the natural action of Zet, i.e., which descend to C
Ŝ
. Note that

since all OC
Ŝ

-torsors on C
Ŝ

split as soon as one allows a pole of order 1 at the origin e, it
follows that there exist Zet-invariant extension polynomials of the form:

T [r] + φr−1T
[r−1] + . . . + φ0

where φ0, . . . , φr−1 are meromorphic on C∞
Ŝ

, regular away from ẽ (the Zet-orbit of the
origin), and have a pole of order at most 1 at the points of ẽ. For instance, the most basic
example (in the case where 2 ∈ O×) of such a polynomial is the polynomial

T + ζ

(where ζ is as in §5) studied in §5. Note that whereas 1et ∈ Zet acts on T by

T �→ T + 1

it acts on ζ by ζ �→ ζ − 1. Thus, T + ζ is indeed Zet-invariant. In the following, we would
like to study the case of arbitrary r ≥ 1.

First, let us introduce some notation: If f is an extension polynomial, then let us
denote the result of acting on f by 1et ∈ Zet by means of the notation α(f). Let

δ(f) def= α(f) − f

This extends the definition of δ given in the discussion preceding Proposition 1.1 (i.e., the
case of extension polynomials with constant coefficients). Also, if f and g are extension
polynomials, then we have

δ(f · g) = δ(f) · α(g) + f · δ(g)

Thus, to say that
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f =
n∑

i=0

φn−i · T [i]

is Zet-invariant means precisely that

δ(f) =
n∑

i=0

δ(φn−i)(T [i] + T [i−1]) + φn−i · T [i−1] = 0

i.e., that for all i,

δ(φn−i) + δ(φn−i−1) + φn−i−1 = 0

(where we let φj
def= 0 for j < 0, j > n). Thus, we obtain the following:

Lemma 6.3. Let n be a nonnegative integer. Suppose that

f =
n∑

i=0

φn−i · T [i]

is a Zet-invariant extension polynomial such that φ0 = 1; and all the φj’s are meromorphic
functions on C∞

Ŝ
which are regular away from ẽ (the Zet-orbit of the origin), and have a

pole of order at most 1 at the points of ẽ. Then there exists a Zet-invariant extension
polynomial

g =
n+1∑
i=0

ψn+1−i · T [i]

such that φj = ψj for 0 ≤ j ≤ n; and ψn+1 is a meromorphic function on C∞
Ŝ

which is
regular away from ẽ (the Zet-orbit of the origin), and has a pole of order at most 1 at the
points of ẽ.

Proof. First note that, since for 0 ≤ j ≤ n, the invariance condition discussed above (i.e.,
“δ(φn−i) + δ(φn−i−1) + φn−i−1 = 0”) on the φj ’s is precisely the same as the invariance
condition on the ψj ’s, it thus follows that

? · T [0] +
n+1∑
i=1

φn+1−i · T [i]
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defines a Zet-invariant section of the sheaf of extension polynomials modulo constant terms
on C∞

Ŝ
. Moreover, since H1(C

Ŝ
,OC

Ŝ

(e)) = 0, it thus follows that as long as we allow a
pole of order 1 at ẽ, this section lifts to a Zet-invariant extension polynomial

g =
n+1∑
i=0

ψn+1−i · T [i]

(where ψj = φj for j = 0, . . . , n, and ψn+1 has the desired properties). This completes the
proof. ©

Theorem 6.4. Let n be a nonnegative integer. Then there exists a Zet-invariant exten-
sion polynomial

f =
n∑

i=0

ζn−i · T [i]

such that ζ0 = 1;

δ(ζn−i) + δ(ζn−i−1) + ζn−i−1 = 0

(for all i); and all the ζj’s are meromorphic functions on C∞
Ŝ

which are regular away from
ẽ (the Zet-orbit of the origin), and have a pole of order at most 1 at the points of ẽ. In
particular, we have

δ(ζj) = −ζj−1 + ζj−2 − ... + (−1)j−1ζ1 + (−1)jζ0

(for all j). Finally, if ζ̂0, . . . , ζ̂n satisfy the same conditions as ζ0, . . . , ζn, then for each
j = 0, . . . , n,

ζj − ζ̂j = some A−linear combination of ζ0, . . . , ζj−1

(where A = O[[q]]).

Proof. The existence of ζ0, . . . , ζn as stated follows by successively applying Lemma 6.3,
starting with the extension polynomial 1 (in the case r = 0). The second formula for δ(ζj)
follows by induction on j from the first formula δ(ζn−i) + δ(ζn−i−1) + ζn−i−1 = 0.

Thus, it remains to see what happens if ζ̂0, . . . , ζ̂n satisfy the same conditions as
ζ0, . . . , ζn. We prove that ζj − ζ̂j is an A-linear combination of ζ0, . . . , ζj−1 by induction
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on j. This is clear for j = 0 since, by assumption, ζ0 = ζ̂0 = 1. Now observe that, by the
induction hypothesis, both

δ(ζj) = −ζj−1 + ζj−2 − ... + (−1)j−1ζ1 + (−1)jζ0

and

δ(ζ̂j) = −ζ̂j−1 + ζ̂j−2 − ... + (−1)j−1ζ̂1 + (−1)j ζ̂0

are of the form “−ζj−1 plus an A-linear combination of ζ0, . . . , ζj−2.” Thus, by repeated
application of the formula

δ(ζl) = −ζl−1 + ζl−2 − ... + (−1)l−1ζ1 + (−1)lζ0

for l ≤ j − 1, it follows that there exists some

γ = ζj + η

where η is an A-linear combination of ζ0, . . . , ζj−1, and, moreover,

δ(γ) = δ(ζ̂j)

In particular, it follows that ε
def= γ − ζ̂j is a meromorphic function on C∞

Ŝ
which is regular

away from ẽ, has a pole of order ≤ 1 at the points of ẽ, and, moreover, satisfies δ(ε) = 0,
i.e., is Zet-invariant. But this implies that ε arises from a meromorphic function on C

Ŝ
which is regular away from the origin, where it has a pole of order ≤ 1. In other words,
this meromorphic function on C

Ŝ
forms a regular section of OC

Ŝ

(e) over C
Ŝ
. But it follows

from Riemann-Roch that such a function must be constant, i.e., ∈ A. Thus, ε = γ− ζ̂j ∈ A.
This completes the proof. ©

Remark 1. Note that the ζj ’s of Theorem 6.4 are not uniquely defined (except for j = 0).
Nevertheless, we shall often refer to these ζj ’s, which are useful for explicit computations,
as higher Schottky-Weierstrass ζ-functions. Also, we observe that if 2 ∈ O×, then the
function ζ of §5 serves as a “ζ1” in Theorem 6.4.

Remark 2. By using the Gm-splitting discussed in §3, one may also construct complex
analytic Schottky-Weierstrass ζ-functions, as follows. Namely, just as in §5, we may form
the complex analytic Schottky-Weierstrass ζ-function

ζ
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by taking the difference between the Gm-splitting of §3 and the meromorphic splitting Sor

of Corollary 4.4. This function is meromorphic on Gm (in the usual sense of complex anal-
ysis), regular away from qZ ⊆ Gm, and satisfies (relative to the notation in the discussion
of the Gm-splitting in §3) the relation

ζ(q · U) = ζ(U) − 1

(where U is the standard multiplicative coordinate on Gm). Indeed, to check that this
relation is satisfied, it suffices (since all the functions involved depend meromorphically on
q and U) to check it as q → 0. But this case is precisely the case where one is working
near the point at infinity of M1,0(C), i.e., the case discussed in §5. Thus, by regarding
the various algebraic and formal algebraic functions of §5 as complex analytic functions,
we see that this relation follows from the corresponding formal algebraic relation proven in
Theorem 5.6. Finally, by performing exactly the same formal operations that we have done
in the present §, but this time in the complex analytic category, we also obtain complex
analytic higher Schottky-Weierstrass ζ-functions

ζ0, . . . , ζn

as in Theorem 6.4.

§7. Canonical Schottky-Weierstrass Zeta Functions

In this §, we continue the discussion of higher Schottky-Weierstrass zeta functions
begun in §6. The purpose of the present § is to construct two collections of canonical
higher Schottky-Weierstrass zeta functions by means of various differential operators acting
on the line bundle under consideration. The first type of canonical zeta function, which
we refer to as divided power canonical zeta functions, is the most basic type of canonical
zeta function. These divided power canonical zeta functions do not satisfy quite the same
relations (concerning the operator δ) as the functions of Theorem 6.4 (although they do
satisfy certain relations similar to the relations in Theorem 6.4), and, moreover, are not
integral, i.e., are only defined over Q. The second type of canonical zeta function, which
we refer to as binomial, is of the sort considered in Theorem 6.4, and, moreover, is integral
except at the prime 2. Both the divided power and binomial canonical zeta functions of
the present § (as well as various other types, to be introduced later) play an important role
in the theory of this paper (cf., especially, Chapter V, §4; Chapter VII; Chapter VIII).

We maintain the notation of §6, except that in this §, we assume, until mentioned
otherwise, that O is a number field. In particular, O ⊇ Q. As usual, we will write

LC∞
Ŝ

= OC∞
Ŝ

(ẽ)
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where ẽ
def= Zet(e) ⊆ C∞

Ŝ
. Note that Zet acts on the global sections of LC∞

Ŝ

over C∞
Ŝ

.

Thus, in particular, the operator δ of §6 defined by

δ(f) def= 1et(f) − f

acts on Γ(C∞
Ŝ

,LC∞
Ŝ

). Just as in §6, we would like to study sections of LC∞
Ŝ

over C∞
Ŝ

which

satisfy certain properties with respect to the operator δ.

Next, let us observe that we also have another operator on sections of LC∞
Ŝ

given by

the connection ∇ on LC∞
Ŝ

defined by the canonical section −κ (cf. Theorem 5.6). That

is to say, by Theorem 5.6, −2 · κ determines a connection on L⊗2
C∞

Ŝ

, so −κ determines a

connection on LC∞
Ŝ

which is defined whenever 2 ∈ O× (as is the case here). Let us denote

the operator on sections of LC∞
Ŝ

given by applying the connection ∇ in the direction U ∂
∂U

by

f �→ δ∗(f) def= ∇(U ∂
∂U )(f)

Note that since (cf. Theorem 5.6), 1et(κ) = κ + d log(U), we obtain that 1et(∇) =
∇− d log(U). Thus, 1et(δ∗) = δ∗ − 1 (i.e., 1et(δ∗(f)) = δ∗(1et(f))− 1et(f)), so we obtain:

[δ∗, δ](f) = [δ∗, 1et](f)
= δ∗(1et(f)) − 1et(δ∗(f))
= 1et(f)

i.e., [δ∗, δ] = 1et. Roughly speaking,

It is natural to think of δ∗ as “differentiation ∂ with respect to the holo-
morphic variable” and δ as “differentiation ∂ with respect to the anti-
holomorphic variable.”

Alternatively, one may think of the operator δ∗ as a sort of adjoint to the operator δ. This
point of view is motivated by the complex analytic theory, which we will discuss in more
detail in Chapter VII, §4.

Next, let us observe that if we let ζPD
0 ∈ Γ(C∞

Ŝ
,LC∞

Ŝ

) be the section defined by

“1 ∈ OC∞
Ŝ

(ẽ),” then it follows from Theorem 5.6 that

δ∗(ζPD
0 ) = ζ1

(where ζ1 is as in §5). Thus, it is natural to set (for any integer n ≥ 0)

95



ζPD
n

def=
1
n!

(δ∗)nζPD
0

Here, “PD” stands for “puissances divisés” (i.e., “divided powers” in French).

Just as was the case with the higher Schottky-Weierstrass zeta functions of Theorem
6.4, the canonical Schottky-Weierstrass zeta functions fit together to form “Zet-invariant
extension polynomials” as follows: First, observe that in the above discussion, we worked
with various functions/sections of line bundles over C∞

Ŝ
. In order to obtain Zet-invariant

extension polynomials, we must instead work with objects over E
†
C |C∞

Ŝ

. Recall that by

Corollary 5.7, E
†
C |C∞

Ŝ

→ C∞
Ŝ

admits a natural splitting which allows us to regard the

push-forward of O
E
†
C
|C∞

Ŝ

to C∞
Ŝ

as the OC∞
Ŝ

-algebra

OC∞
Ŝ

[T ]

(cf. the discussion at the beginning of §6). Note that by Theorem 4.2 (which we are
at liberty to apply since here, we are working in characteristic zero), the pull-back to

E
†
C |C∞

Ŝ

of the line bundle LC admits a tautological connection ∇taut. Here, just as in the

above discussion involving ∇, we use the notation “(δtaut)∗” for the tautological connection
∇taut applied in the direction U ∂

∂U . Since the natural isomorphism of Corollary 5.7 is
an isomorphism of W

Ŝ
-torsors, it follows easily from the definitions that, relative to the

connection ∇ considered above (arising from −κ), we have:

(δtaut)∗ = δ∗ + T

Note that unlike δ∗, the operator (δtaut)∗ descends (since it is “tautological”) to E
†
C , hence

is Zet-invariant. Now we have the following result:

Lemma 7.1. We have (for n ≥ 0):

(i) δ∗(ζPD
n ) = (n + 1) · ζPD

n+1;

(ii) ζPD
n [T ] def=

∑n
i=0 ζPD

i · T n−i

(n−i)! is Zet-invariant.

(iii) δ(ζPD
n ) =

∑n−1
i=0 (−1)i+n 1

(n−i)!ζ
PD
i = −ζPD

n−1 + 1
2 · ζPD

n−2 + . . . + (−1)n · 1
n! · ζPD

0 .

In particular, δn(ζPD
n ) = (−1)n · ζPD

0 .

Proof. First, we observe that: (i) follows immediately from the definition of ζPD
n ; (iii)

follows from the Zet-invariance of (ii) by evaluating the expression of (ii) at “U” equals
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q ·U , “T” equals 0 (which yields 1et(ζPD
n )), and noting that this is equal to the expression of

(ii) at “U” equals U , “T” equals −1 (which yields
∑n

i=0
(−1)i+n

(n−i)! · ζPD
i ). Thus, it suffices to

prove (ii). But (ii) follows from the Zet-invariance of (δtaut)∗: Indeed, since [ δ∗, T ] = 0,
if we apply 1

n! · ((δtaut)∗)n to ζPD
0 (which is clearly Zet-invariant), we obtain:

1
n!

· ((δtaut)∗)n(ζPD
0 ) =

1
n!

·
n∑

i=0

(
n

i

)
(δ∗)i(ζPD

0 ) · Tn−i

=
n∑

i=0

ζPD
i · Tn−i

(n − i)!

as desired. ©

Lemma 7.2. Any φ ∈ Γ(C∞
Ŝ

,LC∞
Ŝ

) such that δn+1(φ) = 0 for some nonnegative

integer n may be written as a unique A-linear combination of ζPD
0 , . . . , ζPD

n . In particular,
ζPD
0 , . . . , ζPD

n are linearly independent over A.

Proof. This follows by induction on n. It is clear when n = 0 (since Γ(C,LC) (⊆
Γ(C∞

Ŝ
,LC∞

Ŝ

)) is a free A-module of rank 1 generated by ζPD
0 ). For arbitrary n ≥ 1,

if δn+1(φ) = 0, then by the induction hypothesis, δ(φ) may be written as an A-linear
combination

∑n−1
i=0 ci · ζPD

i . Thus, by Lemma 7.1, it follows that for some appropriate
c′i ∈ A, the function φ−∑n−1

i=0 c′i · ζPD
i+1 is contained in the kernel of δ, hence can be written

as an A-multiple of ζPD
0 , as desired. Linear independence follows similarly by applying δ,

using the induction hypothesis and Lemma 7.1. ©

Definition 7.3. We shall refer the functions ζPD
n ∈ Γ(C∞

Ŝ
,LC∞

Ŝ

) as divided power (canon-

ical Schottky-Weierstrass) zeta functions.

Thus, putting everything together, we see that we have proven the following result:

Theorem 7.4. (Divided Power Canonical Schottky-Weierstrass Functions) Let
ζPD
0 ∈ Γ(C∞

Ŝ
,LC∞

Ŝ

) be the function “1” ∈ OC∞
Ŝ

(ẽ). Write (for n ∈ Z≥0)

ζPD
n

def=
1
n!

(δ∗)nζPD
0

(and let ζPD
n

def= 0 if n < 0). (Thus, in particular, the function ζPD
1 here is the same as the

function “ζ1” of Theorem 5.6.) Then δ∗(ζPD
n ) = (n + 1) · ζPD

n+1, δn(ζPD
n ) = (−1)n · ζPD

0 (if
n ≥ 0);
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δ(ζPD
n ) =

∑n−1
i=0 (−1)i+n 1

(n−i)!ζ
PD
i = −ζPD

n−1 + 1
2 · ζPD

n−2 + . . . + (−1)n · 1
n! · ζPD

0

(for all n ∈ Z). Moreover, the A-submodule of Γ(C∞
Ŝ

,LC∞
Ŝ

) generated by ζPD
0 , . . . , ζPD

n is

equal to the A-submodule of sections of Γ(C∞
Ŝ

,LC∞
Ŝ

) which are annihilated by δn+1. In

particular, this submodule is equal to the A-submodule of Γ(C∞
Ŝ

,LC∞
Ŝ

) generated by the

functions denoted “ζ0, . . . , ζn” in Theorem 6.4. Finally, the polynomial

ζPD
n [T ] def=

n∑
i=0

ζPD
i · Tn−i

(n − i)!
= ζPD

0 · Tn

n!
+ ζPD

1 · T (n−1)

(n − 1)!
+ . . . + ζPD

n−1 · T + ζPD
n

(∈ Γ(C∞
Ŝ

,LC∞
Ŝ

[T ])) is Zet-invariant (relative to the natural action of Zet on C∞
Ŝ

, LC∞
Ŝ

,

and the action of Zet on T given by 1et(T ) = T + 1).

Remark 1. Just as was the case with Theorem 6.4, Theorem 7.4 also has a complex analytic
version. We leave the routine details to the reader.

Remark 2. It is clear from the formula for δ(ζPD
n ) that the denominators that occur

are “essential” (i.e., they cannot be eliminated as in the case of Theorem 6.4 simply
by “redefining the integral structure” as in Definition 6.2). In fact, we shall see (cf.
Chapter VI) that the functions of Theorem 6.4 are more suited to the study of the universal
extension at finite primes (i.e., in mixed characteristic), where as the functions of Theorem
7.4 are more suited to the study of the universal extension at infinite primes (cf. Chapter
VII; Chapter VIII).

Remark 3. One “generating function-theoretic” way to summarize the content of Theorem
7.4 is the following: Let s be an indeterminate. Note that

[ δ, (δtaut)∗ ] = [ δ, δ∗ + T ] = 0

Thus, since δ(ζPD
0 ) = 0, δ also annihilates

e(δ∗+T )·s · ζPD
0 =

∑
n≥0

( n∑
i=0

ζPD
i · Tn−i

(n − i)!

)
· sn

= ζPD
0 [T ] + ζPD

1 [T ] · s + ζPD
2 [T ] · s2 + . . . + ζPD

n [T ] · sn + . . .
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The coefficients of this series are precisely the functions discussed in Theorem 7.4.

Next, we would like to construct the binomial canonical Schottky-Weierstrass func-
tions. First, recall the polynomials

T [n] def=
1
n!

T (T − 1)(T − 2) · . . . · (T − (n − 1))

discussed in §6. If D is any operator, we shall denote by

(
D

n

)

the operator obtained by substituting D into the polynomial T [n].

Lemma 7.5. If D1 and D2 are any two commuting operators, we have (for n a positive
integer)

(
D1 + D2

n

)
=

n∑
m=0

(
D1

m

)
·
(

D2

n − m

)

Proof. This identity is essentially an equality between two polynomials (i.e., the expres-
sions on the left- and right-hand sides) in two variables (i.e., D1, D2). Thus, it holds
if and only if holds when D1 and D2 are arbitrary positive integers. But for such D1

and D2, this identity may be checked by considering the coefficients of xn in the equality
(1 + x)D1+D2 = (1 + x)D1 · (1 + x)D2 (where x is an indeterminate). ©

Now we define ζBI
0

def= ζPD
0 ; (for n a positive integer) ζBI

n
def=
(
δ∗

n

)
(ζPD

0 );

ζBI
n [T ] def=

(
δ∗ + T

n

)
(ζPD

0 ) =
n∑

m=0

ζBI
m · T [n−m]

Note that the Zet-invariance of (δtaut)∗ = δ∗ + T implies that ζBI
n [T ] is also Zet-invariant.

In particular, the ζBI
n are higher Schottky-Weierstrass zeta functions in the sense of the

Theorem 6.4. From a “generating function-theoretic” point of view, one can write

(1 + s)(δ
∗+T ) · ζBI

0 =
∑
n≥0

ζBI
n [T ] · sn

= ζBI
0 [T ] + ζBI

1 [T ] · s + ζBI
2 [T ] · s2 + . . . + ζBI

n [T ] · sn + . . .
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Finally, we observe that the ζBI
n are integral over Z[12 ]. Indeed, to see this, we reason as

follows: Recall the section σalg ∈ Γ(C,LC) of §5. If we apply
(
δ∗

n

)
to (σalg)2|C∞

Ŝ

= (σan)2 ·θ,

which is a series with Z-integral coefficients in the monomials

{qk2+k · U2k+1 · θ, qk2 · U2k · θ, qk2−k · U2k−1 · θ}

then since
(
δ∗

n

)
acts on Uk by multiplication by

(
k
n

)
, we obtain that

(
δ∗

n

)
(σalg)2|C∞

Ŝ

is Z-

integral. On the other hand, ζBI
n is essentially

(
δ∗

n

)
(σalg)|C∞

Ŝ

, so the Z[12 ]-integrality of ζBI
n

follows formally by solving for 2 · sn
(
δ∗

n

)
(σalg)|C∞

Ŝ

(and applying induction on n) in the

formal identity

(1 + s)δ∗{(σalg)2} = {(1 + s)δ∗(σalg)}2

(where we note that this formal identity follows from the general fact that if X is any
“operator” on “(commuting) functions” A, B which satisfies the Leibniz rule, then the
identity eX(A · B) = eX(A) · eX(B) is a formal consequence of the Leibniz rule).

Definition 7.6. We shall refer the functions ζBI
n ∈ Γ(C∞

Ŝ
,LC∞

Ŝ

) as binomial (canonical

Schottky-Weierstrass) zeta functions.

Theorem 7.7. (Binomial Canonical Schottky-Weierstrass Functions) Let ζBI
0 ∈

Γ(C∞
Ŝ

,LC∞
Ŝ

) be the function “1” ∈ OC∞
Ŝ

(ẽ). Write (for n ∈ Z≥0) ζBI
n

def=
(
δ∗

n

)
(ζBI

0 );

ζBI
n [T ] def=

(
δ∗ + T

n

)
(ζBI

0 ) =
n∑

m=0

ζBI
m · T [n−m]

Then the ζBI
n , ζBI

n [T ]’s satisfy the properties of Theorem 6.4 (where we take “ζn” of The-
orem 6.4 to be ζBI

n ; “f” of Theorem 6.4 to be ζBI
n [T ]). In particular, the ζBI

n [T ]’s are
Zet-invariant. Finally, the ζBI

n [T ]’s are integral over Z[12 ].
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Chapter IV: Theta Groups and Theta Functions

§0. Introduction

In this Chapter, we discuss theta groups in various contexts. These groups will play a
key role in this paper. In §1, we review the “classical theory” of theta groups and algebraic
theta functions of [Mumf1,2,3], specialized to the case of elliptic curves. In §2, we discuss
the relationship between this sort of theta action, and the theta action that one considers
in the case of the Schottky uniformization of a degenerating elliptic curve. In §3, we use
the theory of §2 to define twisted Schottky-Weierstrass zeta functions, which will play an
important role in the calculations of Chapter V. In §4, we review Zhang’s theory ([Zh]) of
metrized line bundles. Finally, in §5, we discuss the relationship between Zhang’s theory
and the theory of Mumford reviewed in §1. We then apply this discussion to compute
various degrees of push-forwards of metrized line bundles.

§1. Mumford’s Algebraic Theta Functions

In this §, we review the definitions and basic properties of theta groups (cf., e.g., [MB],
Chapitres V, VI) and algebraic theta functions (cf. [Mumf1,2,3]). See also [Mumf4] for
basic facts concerning abelian varieties. Let

f : E → S

be an elliptic curve over a scheme S, with identity section e : S → E. Let L be a relatively
ample, symmetric line bundle on E, of relative degree d (over S). Then it is not difficult
to show that L is necessarily of the form:

L def= OE((d − 1) · [e] + [τ ]) ⊗OS
M

where τ ∈ E(S) is a section such that 2 · τ = 0, and M is a line bundle on S.

For any point α ∈ E(T ) over an S-scheme T , the line bundle

(T ∗α L) ⊗ L−1

(where ET
def= E ×S T ; Tα : ET → ET is translation by α) on ET is of relative degree 0

over T , hence defines (by α �→ (T ∗α L) ⊗ L−1) a homomorphism
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φL : E → E

whose kernel

KL = Ker([d] : E → E)

is the kernel of multiplication by d on E. In particular, KL is a finite, flat group scheme
over S.

Next, we define the scheme

GL

to be the scheme that represents pairs (α, ι), where α ∈ E(T ) belongs to KL(T ), and
ι : T ∗α L ∼= L is an isomorphism of line bundles on ET . Then GL has a natural structure of
group scheme over S which fits into an exact sequence (in, say, the finite flat topology of
S):

1 → (Gm)S → GL → KL → 1

where the projection GL → KL is given by (α, ι) �→ α, and the inclusion (Gm)S ↪→ GL is
given by the natural action of (Gm)S on L. Although (Gm)S lies in the center of GL, in
general, GL will not be commutative. Indeed, the commutator map (α, β) �→ α·β ·α−1 ·β−1

(for α, β ∈ GL(T )) defines a bilinear nondegenerate pairing

[−,−] : KL × KL → (Gm)S

The group scheme GL is called the theta group associated to the line bundle L.

Next, we would like to consider quasi-coherent OS-modules equipped with an action
of GL such that (Gm)S ⊆ GL acts via the “identity character” (Gm)S → (Gm)S . We
shall refer to such modules as “OS [GL]-modules,” for short. Note that it follows from the
definition of GL that

V def= f∗L

has a natural structure of OS [GL]-module. Moreover, one has the following (cf. [MB],
Chapitre V, Corollaire 2.4.3):

Theorem 1.1. The operation “⊗OS
V” induces an equivalence of categories between the

category of quasi-coherent OS-modules and the category of OS [GL]-modules. Moreover,
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up to tensor product with a line bundle on S, V is the unique OS [GL]-module with this
property.

Example 1.2. Now suppose that we have an isomorphism

KL ∼= μd × (Z/dZ)

such that the pairing discussed above is given by (α, β) �→ αβ , for α ∈ μd, β ∈ Z/dZ,
λ ∈ Gm(T ). Then one may construct GL, as well as the GL-module V explicitly, as follows.
First of all, the T -valued points (for an S-scheme T ) GL(T ) of the group scheme GL may
be thought of as the set of triples (α, β, λ), where α ∈ μd, β ∈ Z/dZ, λ ∈ Gm(T ), and the
multiplication law is given by:

(α1, β1, λ1) · (α2, β2, λ2) = (α1 · α2, β1 + β2, λ1 · λ2 · α−β1
2 )

Now define the GL-module W as the free OS-module

W
def= OS · e0 ⊕OS · e1 ⊕ . . . ⊕OS · ed−1

(where we think of the indices of the ei as elements of Z/dZ) on which (0, 0, λ) ∈ GL(T )
acts via the OS-module structure; (α, 0, 1) acts on ei via ei �→ αi · ei; and (0, β, 1) maps ei

to ei+β. Then the resulting OS [GL]-module W is isomorphic to

M⊗OS
f∗L

where M is a line bundle on S.

Next, we consider Lagrangian subgroups of GL. Let

KH ⊆ KL

be a subgroup scheme of KL which is étale locally (on S) isomorphic to either to μd or
to Z/dZ, and, moreover, has the property that the restriction of the pairing KL × KL →
(Gm)S discussed above to KH is trivial. Then the inverse image GH ⊆ GL of KH defines
an abelian group scheme over S which fits into an exact sequence

1 → (Gm)S → GH → KH → 1

If KH is étale locally isomorphic to μd, then (Gm)S and KH are both group schemes of
multiplicative type. Hence, it follows that the splittings of this exact sequence are equiv-
alent to splittings of the corresponding exact sequence of character groups (i.e., the exact
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sequence given by applying Hom(−, (Gm)S) to the above exact sequence). In particular,
we see that the above exact sequence splits étale locally on S. If KH is étale locally iso-
morphic to Z/dZ, then the issue of whether or not this sequence splits is more delicate,
but in the cases that we are interested in, this sequence will, in fact, split.

Suppose that

H ⊆ GH

is a splitting of the above exact sequence. Then we have a natural isomorphism H ∼= KH .

Definition 1.3. We shall refer to a subgroup KH ⊆ KL as above as a Lagrangian
subgroup of KL. We shall refer to splittings H ⊆ GH as Lagrangian subgroups of GL.

Remark. Note that the definition of “Lagrangian” here is somewhat different from that
of [MB]. Nevertheless, when applied to H (as opposed to KH), any Lagrangian subgroup
relative to Definition 1.3 is also Lagrangian for [MB], Chapitre V, Définition 2.5.1.

The following result is proven in [MB], Chapitre V, Théorème 3.2, (i); Chapitre VI,
Propositions 1.2, 1.4.5:

Theorem 1.4. Let H ⊆ GL be Lagrangian. Then the correspondence

M �→ MH

defines a equivalence of categories between the category of OS [GL]-modules and the category
of quasi-coherent OS-modules. Moreover, H ⊆ GL defines a line bundle LH on the elliptic
curve EH

def= E/KH together with an isomorphism LH |E ∼= L. Finally, this isomorphism
induces an isomorphism

(f∗L)H ∼= (fH)∗(LH)

(where fH : EH → S is the structure morphism).

Remark. In fact, to give a line bundle LH on EH = E/KH together with an isomorphism
LH |E ∼= L is equivalent to giving the datum of the lifting H ⊆ GL of KH ⊆ KL. Thus,
often instead of specifying (respectively, showing the existence of) the lifting H ⊆ GL, we
will specify (respectively, show the existence of) the line bundle LH on EH = E/KH .

Theorem 1.4 is convenient for reducing proofs concerning f∗L to proofs concerning
(fH)∗(LH).
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We are now ready to review Mumford’s construction of algebraic theta functions (cf.
[Mumf1,2,3]). In the remainder of this §, we assume, for simplicity, that

τ = e

If N ∈ Z, let us write [N ] : E → E for the map given by multiplication by N . Note that
the map [−1] : E → E is an automorphism of E of order 2 such that [−1]∗L = L, i.e.,
by “=,” we mean the isomorphism between [−1]∗L and L arising from the fact that (up
to tensor product with a line bundle on S) L is the line bundle associated to the divisor
d · [e], which is fixed by [−1]. Thus, from the definition of GL, it follows that [−1] gives
rise to an automorphism

δL : GL → GL

of order 2 whose restriction to (Gm)S is the identity and which induces the inverse mor-
phism on the quotient KL of GL. Let us write

SL ⊆ GL

for the subscheme of T -valued points (where T is an S-scheme) γ ∈ GL satisfying δL(γ) =
γ−1. Such points γ are often referred to as symmetric (cf. [Mumf1], Definition, p. 309).
One checks easily that the projection

SL → KL

is surjective, finite, and flat, and that it is, in fact, a torsor over μ2 (⊆ Gm). In the
following discussion, we would like to show that this torsor admits a natural section over
2 · KL ⊆ KL.

The construction of this section, as well as the sort of section obtained, differ slightly,
depending on whether d is even or odd. We begin by making the following construction,
which is valid regardless of the parity of d: For α ∈ KL(T ) (where T is an S-scheme), if
α̃ ∈ GL(T ) is any element that lifts α, then the assignment

α �→ α̃ · δL(α̃−1)

(where we note that the right-hand side is independent of the choice of α̃ since δL induces
the identity on (Gm)S ⊆ GL) defines a morphism

σ1 : KL → GL

which factors through SL ⊆ GL, and whose composite with the projection GL → KL is the
morphism [2] : KL → KL (multiplication by 2 on KL). (Note, that here we write the group
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law of KL additively.) Indeed, these facts follow from the fact that δL is an automorphism
of the group scheme GL of order 2 which induces the automorphism [−1] on the quotient
KL of GL. This morphism σ1 is not (in general) a group homomorphism, but does satisfy
the following property:

Lemma 1.5. Let α, β ∈ KL(T ) (where T is an S-scheme). Then

σ1(α + β) = [α, β]−2 · σ1(α) · σ1(β)

(where we write the group law of KL (respectively, GL) additively (respectively, multipli-
cately)). In particular, it follows that: (i.) if [α, β]2 = 1 ∈ Gm, then σ1(α + β) =
σ1(α) · σ1(β); (ii.) the restriction of σ1 to any subgroup scheme of KL on which the pair-
ing [−,−] (discussed above) is trivial — we shall call such subgroup schemes “[−,−]-trivial”
— is a group homomorphism.

Proof. Indeed, if β̃ ∈ GL(T ) lifts β, then α̃ · β̃ lifts α + β, so we have:

σ1(α + β) = α̃ · β̃ · δL(β̃−1 · α̃−1)

= α̃ · (β̃ · δL(β̃−1)) · δL(α̃−1)

= [α, β]−2 · α̃ · δL(α̃−1) · (β̃ · δL(β̃−1))

= [α, β]−2 · σ1(α) · σ1(β)

as desired. The remaining assertions follow immediately. ©

Thus, at any rate, if d is odd, then multiplication by [2] defines an automorphism on
KL, so we obtain by σ1 defines a section

σ : KL (= 2 · KL) → GL

(such that σ · [2] = σ1), as desired.

Next, we consider the case when d is even. First, we introduce some notation: Let us
write

d0
def=

1
2
d

For N ∈ Z, let us denote the kernel of [N ] : E → E by

NE
def= ker([N ] : E → E)
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Then I claim that the morphism σ1 : KL = dE → GL factors through KL/2E ∼= d0E.
Indeed, it suffices to prove that for any α, β ∈ KL(T ) (for T an S-scheme) such that
2β = 0, we have σ1(α+β) = σ1(α). But by Lemma 1.5, we have σ1(α+β) = σ1(α) ·σ1(β)
(since [α, β]2 = [α, 2β] = [α, 0] = 1). Thus, it suffices to show that σ1(β) = 1. But
this follows from the fact that since the line bundle L is totally symmetric (cf. [Mumf1],
§2, Propositions 3, 6; Corollary 2), after finite flat localization, we may choose the lift
β̃ ∈ GL(T ) of β ∈ KL(T ) to lie inside SL(T ) ⊆ GL(T ) and (at the same time) satisfy
β̃2 = 1. Thus, σ1(β) = β̃ · δL(β̃)−1 = β̃2 = 1, as desired. This completes the proof of the
claim.

Note that we have:

2 · KL def= d0E ⊆ dE = KL

In particular, we obtain a morphism

σ : 2 · KL → GL

which factors through SL ⊆ GL, and whose composite with the projection GL → KL is
the natural injection 2 · KL ⊆ KL. That is to say, in the even case, we obtain a section
of GL → KL over the subgroup scheme 2 · KL ⊆ KL. This completes our discussion of the
even case.

Observe that in both the even and odd cases, the section σ over 2 · KL that we
constructed satisfies the following property: If α = 2α1, β = 2β1 ∈ 2 · KL(T ) (where T is
an S-scheme), then

σ(α + β) · σ(α)−1 · σ(β)−1 = [α1, β1]2

(where we note that since [KL, 2E]2 = [KL, 0] = 1, it follows (a priori!) that [α1, β1]2

depends only on α, β). Indeed, this relation follows immediately from Lemma 1.5. Let us
observe that although the proof of Lemma 1.5 depends on the explicit definition of σ in
terms of δL, the square of the above relation, i.e.,

{σ(α + β) · σ(α)−1 · σ(β)−1}2 = [α, β]

may be proven solely from the assumption that σ maps into SL ⊆ GL: Indeed, let us
denote σ(α +β) ·σ(α)−1 ·σ(β)−1 ∈ Gm(T ) by λ. Then since σ(α+β) ∈ SL(T ), we obtain
δL(σ(β)) ·δL(σ(α)) ·λ = λ−1 ·σ(α)−1 ·σ(β)−1. If we combine this with δL(σ(α)) = σ(α)−1,
δL(σ(β)) = σ(β)−1, then the result follows immediately.

Next, note that if α ∈ E(S), then transport of structure defines a natural isomorphism

Gα : GT ∗αL ∼= GL
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which is compatible with the injections of Gm, and projections to KL = KT ∗αL on both
sides. Thus, by conjugating by Gα, we see that σ : 2 · KL → GL defines a section

σα : 2 · KT ∗αL → GT ∗αL

In summary, we have proven the following result (which is implicit in the theory of [Mumf1],
§2):

Theorem 1.6. Let E → S be an elliptic curve over a scheme S. Let d be a positive
integer. Let M be a line bundle on S. Write

L def= OE(d · [e]) ⊗OS
M

Then:

(1) There is a canonical section

σ : 2 · KL → GL

of the projection GL → KL over 2 ·KL ⊆ KL that maps into SL ⊆ GL, is
functorial in S, and whose restriction to [−,−]-trivial subgroup schemes
of 2 ·KL is a group homomorphism. Moreover, these properties uniquely
determine σ over 4 · KL.

(2) The section σ is related to the pairing [−,−] : KL × KL → (Gm)S by
the following formula: If α = 2α1, β = 2β1 ∈ 2 · KL(T ) (where T is an
S-scheme), then

σ(α + β) · σ(α)−1 · σ(β)−1 = [α1, β1]2

In particular, we have: {σ(α + β) · σ(α)−1 · σ(β)−1}2 = [α, β].

(3) Finally, if α ∈ E(S), then σ defines a section

σα : 2 · KT ∗αL → GT ∗αL

by transport of structure via the translation morphism Tα : E → E.

Now suppose that d is odd (respectively, even). Then K0
L

def= KL/2 · KL is = S
(respectively, ∼= 2E). If one thinks of σ as a 2 ·KL-valued point of GL, then it follows from
the definition of GL that if α ∈ E(S) is any S-valued point, then σ induces an isomorphism
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L|T ∗α KL
∼= (L|α0) ⊗O

K0
L
OKL

for some line bundle L|α0 on the quotient K0
L of KL. Thus, put another way, the canonical

section σ determines natural descent data for L|T ∗α KL from KL to K0
L. (Thus, if d is odd,

then we may think of this isomorphism as a trivialization of the restriction of the line bundle
L to the subscheme T ∗α KL.) In particular, restriction to T ∗α KL defines (by composing with
the above isomorphism) a morphism of OK0

L
-modules with natural GL-action:

f∗L → (L|α0) ⊗O
K0
L
OKL

In other words, this morphism allows us to think of global sections of L over E as being
(essentially) functions on the subscheme T ∗α KL. These functions are the algebraic theta
functions of [Mumf1,2,3].

§2. Theta Actions and the Schottky Uniformization

In this §, we discuss the relationship between torsion actions on line bundles (i.e., as
in §1) and the uniformization theory reviewed in Chapter III, §5. Thus, in this §, we will
use the same notation as in Chapter III, §5. We begin by reviewing this notation. First of
all, O is a Zariski localization of the ring of integers of a finite extension of Q;

A
def= O[[q]]; S

def= Spec(A); Ŝ
def= Spf(A)

(where q is an indeterminate, and we regard A as equipped with the q-adic topology).
Over S, we had a natural elliptic curve E → S, together with a compactification C → S
whose pull-back C

Ŝ
→ Ŝ to Ŝ may be obtained as a quotient of an object C∞

Ŝ
with respect

to the natural action of the group Zet on C∞
Ŝ

. Moreover, we have a natural identification
E

Ŝ
= (Gm)

Ŝ
. The special fiber (C∞

Ŝ
)spl of C∞

Ŝ
(i.e., the zero locus of the function q) is a

chain of P1’s over Spec(O) indexed by Z and permuted by the action of Zet in a fashion
which is compatible with the indexing by Z and the natural action of Zet = Z on Z (by
addition). Recall that we denoted the origin of E by e. This origin, regarded as a divisor
in E or C, gives rise to line bundles LE

def= OE(e), LC
def= OC(e). The inverse image of e

in C∞
Ŝ

(via the quotient map C∞
Ŝ

→ C
Ŝ
) is denoted by ẽ ⊆ C∞

Ŝ
. In Chapter III, §5, we

also discussed how

Γ(C∞
Ŝ

,L⊗2i
C∞

Ŝ

)

110



(where LC∞
Ŝ

def= LC |C∞
Ŝ

) may be described explicitly as the degree i portion of a certain

graded ring R′E . This explicit description will play a key role in this §, and, indeed, in the
proof of the main results of this paper.

In the following, we fix a positive even number n = 2m. Then let us recall (cf. [Mumf5],
p. 289) that there is a natural action of (Gm)

Ŝ
= E

Ŝ
on C∞

Ŝ
and L⊗2

C∞
Ŝ

. In particular,

we obtain a natural action of (μn)
Ŝ

(i.e., the kernel of multiplication by n on the abelian
group object (Gm)

Ŝ
) on C∞

Ŝ
and LC∞

Ŝ

. On the other hand, one also has a natural action

of Zet in C∞
Ŝ

and L⊗2
C∞

Ŝ

. Moreover, it is easy to see from the definitions of these actions

of Zet and (μn)
Ŝ

(i.e., (μn)
Ŝ

acts trivially on θ – cf. [Mumf5], p. 289; the action of Zet,
namely, 1et(θ) = q · U2 · θ, is discussed in Chapter III, §5) that they commute on C∞

Ŝ
and

L⊗n
C∞

Ŝ

. Thus, it follows that we may form the quotients

C̃∞
Ŝ

def= C∞
Ŝ

/μn; C̃
Ŝ

def= C
Ŝ
/μn; Ẽ

Ŝ

def= E
Ŝ
/μn; M̃

Ŝ

def= L⊗n
C

Ŝ

/μn

of C∞
Ŝ

, C
Ŝ
, E

Ŝ
, and L⊗n

C
Ŝ

, respectively, by (μn)
Ŝ
. Indeed, in the case of C∞

Ŝ
, if we think

of C∞
Ŝ

as the q-adic completion of a sort of Néron model of Gm over A[q−1] (cf. the

discussion in Chapter III, §5), then the quotient C∞
Ŝ

→ C̃∞
Ŝ

is just the quotient induced
on completions of Néron models by the morphism Gm → Gm given by multiplication by
n. Finally, note that M̃

Ŝ
defines a line bundle of degree 1 on C̃

Ŝ
whose pull-back to C

Ŝ

is L⊗n
C

Ŝ

.

Next, let us write

C
[n]

Ŝ

def= C∞
Ŝ

/(n · Zet)

Thus, we obtain covering morphisms

C∞
Ŝ

→ C
[n]

Ŝ
→ C

Ŝ
→ C̃

Ŝ

where the first two morphisms are étale with Galois groups n ·Zet and Zet/n
def= Zet/n ·Zet,

respectively, and the last morphism is the quotient by the action of (μn)
Ŝ
. Moreover,

the last two morphisms may be algebraized (along with the line bundle M̃
Ŝ

on C̃
Ŝ
) into

morphisms

C [n] → C → C̃

(and a line bundle M̃ on C̃) which compactify isogenies of smooth group schemes
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E[n] Zet/n−→ E
μn−→ Ẽ

over S. Here, the groups over the arrows denote the kernels of the respective arrows,
or, alternatively, the finite group schemes with respect to which the arrows are torsors.
The group schemes E and Ẽ have connected special fibers, while the group of connected
components of the special fiber of E[n] may be identified with Zet/n. Moreover,

Πn
def= (Zet/n) × μn

acts on C [n] and E[n], and E[n] → Ẽ is naturally a Πn-torsor.

Next, observe that the group of line bundles on Ẽ whose pull-back to E[n] is trivial
may be identified with the group of characters

Hom(Πn, (Gm)S) = Hom(Πn, (μn)S)

(where the “Hom” is with respect to group schemes over S, or equivalently in this case,
over Spec(A[q−1])). Indeed, this correspondence may be given explicitly as follows. Given
a character

χ ∈ Hom(Πn, (μn)S)

one obtains an action of Πn on the trivial OE[n] -module OE[n] that covers the natural
action of Πn on E[n] by multiplying the trivial action of Πn on OE[n] by χ. Let us denote
OE[n] equipped with this action by Oχ

E[n] . Then taking Πn-invariants of Oχ
E[n] gives us

(since E[n] → Ẽ is a Πn-torsor) a line bundle Oχ

Ẽ
on Ẽ whose restriction to E[n] is equal

to Oχ
E[n] and whose n-th power is trivial. Put another way, Oχ

Ẽ
may be thought of as the

sheaf of functions f(ε) on E[n] which satisfy the transformation rule:

f(α · ε) = χ(α)−1 · f(ε)

(for all points α (valued in some scheme) of Πn). This correspondence

χ �→ Oχ

Ẽ

induces the natural bijection between characters and line bundles referred to above. Also,
note that although it is not clear whether or not Oχ

Ẽ
extends to a line bundle on C̃, it

is clear that the line bundle with Πn-action Oχ
E[n] on E[n] extends to a line bundle with

Πn-action Oχ
C[n] on C [n].

Next, let us observe that the line bundle
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L̃
C̃

def= O
C̃

(ẽ)

(where ẽ is the identity of Ẽ) satisfies

L̃
C̃
|C[n] = OC[n]([Πn]) ∼= OC[n](n · [Zet/n]) = L⊗n

C |C[n] = M̃|C[n]

(where [Πn] and [Zet/n] denote the divisors in C [n] defined by the respective subgroup
schemes of E[n]). Here, the isomorphism “∼=” in the middle follows from the fact that,
since the image of μn forms a subgroup scheme in C [n] annihilated by n, and OC[n]([Zet/n])
is a line bundle of degree n on C [n], we obtain that translation by μn fixes the isomorphism
class of OC[n]([Zet/n]), hence that OC[n]([Πn]) ∼= OC[n](n · [Zet/n]), as desired. Thus, it
follows from the discussion above concerning characters that there exists a unique χ ∈
Hom(Πn, (μn)S) such that

L̃
Ẽ

= Oχ

Ẽ
⊗O

Ẽ

(M̃|
Ẽ

)

We are now ready to state the main result of this §:

Theorem 2.1. The character χ ∈ Hom(Πn, (μn)S) such that

L̃
Ẽ

= Oχ

Ẽ
⊗O

Ẽ

(M̃|
Ẽ

)

(is the unique character which) satisfies: χ(1et) = −1; χ|μn
: μn → μn is the character

given by raising to the m-th power.

Proof. To simplify notation, write ψ
def= θm. Recall (cf. [Mumf5], especially p. 289) that

the action of Zet × μn on ψ which gives rise to the line bundle M̃ is the trivial action. In
the following, we shall wish to take objects which have some action of Zet ×μn defined in
[Mumf5], and twist this action by the character χ described in the statement of Theorem
2.1. We shall denote the resulting objects with twisted action by means of a superscript
or subscript χ (whichever is more convenient), and write, for instance,

[−1](ψ) = ψ; [−1](ψχ) = −ψχ

(where [−1] is a generator of μn/μm = μ2). Since L̃ has a unique (up to constant multiples)
nonzero global section whose zero locus is precisely ẽ, it suffices to check that the set of
Zet ×μn-invariant sections of (L⊗m

C∞
Ŝ

)χ on (C∞
Ŝ

)spl has a generator whose zero locus on the
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Gm inside (C∞
Ŝ

)spl which contains the identity is precisely the zero locus of Un − 1 (i.e.,

the inverse image of ẽ ⊆ Ẽ).

To show this, recall from Chapter III, §5, that the image of Γ(C∞
Ŝ

,L⊗m
C∞

Ŝ

) under re-

striction to this Gm is the O-module generated by

Um · ψχ, Um−1 · ψχ, . . . , U · ψχ, ψχ, U−1 · ψχ, . . . , U−m+1 · ψχ, U−m · ψχ

Since the only μm-invariant (where μm ⊆ μn) U i are those for which i is divisible by m,
and, moreover, [−1](ψχ) = −ψχ �= ψχ (where [−1] is a generator of μn/μm = μ2), it
follows that the μn-invariant subspace of this image is given by the O-module generated
by the two elements:

Um · ψχ, U−m · ψχ

Moreover, we have

1et(U−m · ψχ) = χ(1et) · (q · U)−m · (q · U2)m · ψχ = χ(1et) · Um · ψχ = −Um · ψχ

Thus, the Zet × μn-invariant subspace is generated by

(Um − U−m) · ψχ

whose zero locus is the same as that of Un − 1, as desired. ©

Before concluding this §, we make some final remarks which will be helpful for the
computations that we will perform later. First, observe that it is a consequence of the dis-
cussion at the beginning of Chapter III, §5, that Γ(C∞

Ŝ
,L⊗n

C∞
Ŝ

) is topologically A-generated

by the sections

Um · θm, Um−1 · θm, . . . , U · θm, θm, U−1 · θm, . . . , U−m+1 · θm, U−m · θm

and their Zet-translates. Let us compute these Zet-translates. Since 1et(U) = q · U ,
1et(θ) = q · U2 · θ, we obtain, for k, i ∈ Z, |i| ≤ m:

ket(U i) = qik · U i; ket(θm) = qm·k2 · U2mk · θm
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Thus, we obtain the following:

Proposition 2.2. The A-module Γ(C∞
Ŝ

,L⊗n
C∞

Ŝ

) is topologically A-generated by the sections

ket(U i · θm) = qm·k2+ik · U2mk+i · θm

where k, i ∈ Z, |i| ≤ m.

(For instance, the case m = 1 of Proposition 2.2 is essentially stated in the discussion at
the beginning of Chapter III, §5.)

We will ultimately use Proposition 2.2 to compute the image in E
Ŝ

= (Gm)
Ŝ

of
sections of L⊗n

C∞
Ŝ

⊗OC∞
Ŝ

Oχ
C∞

Ŝ

for various characters χ ∈ Hom(Πn, (μn)S).

§3. Twisted Schottky-Weierstrass Zeta Functions

In this §, we generalize the discussion of Schottky-Weierstrass zeta functions of Chapter
III, §6, 7, to the “twisted” context of §2. We maintain the notation of §2.

First, let us recall the isogeny

E → Ẽ

discussed in §2. This kernel of this isogeny is μn. Moreover, this isogeny may be com-
pactified to a morphism C → C̃. Recall (Chapter III, §1) that the universal extension E†
of E is defined by considering certain line bundles with connection on C. Given such a
line bundle with connection on C, by taking the norm of this line bundle (relative to the
finite morphism C → C̃), we obtain a line bundle on C̃; moreover, taking the trace of the
connection on the line bundle on C, we get a connection on the norm on this line bundle
on C̃. Thus, by performing these operations, we obtain a push-forward homomorphism

E† → Ẽ†

which covers (since taking the norm of the line bundle defined by a divisor on E is the
same as taking the line bundle associated to the image of this divisor in Ẽ) the given
isogeny E → Ẽ. Moreover, since taking the trace of differentials on E

Ŝ
= (Gm)

Ŝ
via what

amounts to the multiplication by n map (Gm)
Ŝ

= E
Ŝ
→ (Gm)

Ŝ
= Ẽ

Ŝ
on (Gm)

Ŝ
induces

an isomorphism of the invariant differentials on E
Ŝ

onto the invariant differentials on Ẽ
Ŝ

(i.e., the trace of dU/U is n · dU/U = d(Un)/(Un)), it follows that the push-forward map
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defined above maps WE ⊆ E† (i.e., WE is what we called “W” when E was the only
elliptic curve under discussion) isomorphically onto W

Ẽ
⊆ Ẽ†. That is to say, we have a

commutative diagram

0 −→ WE −→ E† −→ E −→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −→ W

Ẽ
−→ Ẽ† −→ Ẽ −→ 0

where the vertical arrow on the left is an isomorphism, and

Ker(E† → Ẽ†) ∼= Ker(E → Ẽ) ∼= μn

Next, we would like to consider the canonical splittings κ : E
Ŝ
→ E

†
Ŝ
, κ̃ : Ẽ

Ŝ
→ Ẽ

†
Ŝ

of
Chapter III, §2, Theorem 2.1. Now I claim that

κ(Ker(E → Ẽ)) ⊆ Ker(E† → Ẽ†)

Indeed, since κ is a homomorphism, it follows that the image

Im(κ(Ker(E → Ẽ))) ⊆ Ẽ
†
Ŝ

is annihilated by n and vanishes when projected to Ẽ
Ŝ
, hence is contained in (W

Ẽ
)
Ŝ
. On

the other hand, the image in (W
Ẽ

)
Ŝ
∼= A1

Ŝ
of any A-flat group scheme annihilated by n

is necessarily trivial. Indeed, this may be checked (by A-flatness) in characteristic zero,
where it is obvious. This completes the proof of the claim. Note that the claim then implies

that κ : E
Ŝ
→ E

†
Ŝ

descends to a homomorphism Ẽ
Ŝ
→ Ẽ

†
Ŝ

which splits the projection

Ẽ
†
Ŝ
→ Ẽ

Ŝ
. Since κ̃ is the unique such homomorphism (cf. Chapter III, §2), it thus follows

that we have a commutative diagram:

E
Ŝ

κ−→ E
†
Ŝ⏐⏐� ⏐⏐�

Ẽ
Ŝ

κ̃−→ Ẽ
†
Ŝ

Next, we consider line bundles. For convenience, we assume that O has enough primes
inverted so that

Pic(O) = {1}
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(Here, we use the well-known fact from elementary algebraic number theory that “Pic”
of the ring of integers of a number field is a finite group, i.e., “the finiteness of the class
group.”) Note that since Pic(O) is trivial, it follows immediately that Pic(A) is also trivial.
Now recall the line bundle

M̃

on C̃. If χ ∈ Hom(Πn, (μn)S), then we shall write

M̃χ

Ẽ

def= Oχ

Ẽ
⊗O

Ẽ

(M̃|
Ẽ

)

Note that since C is regular, and C − E is of codimension 2 in C, it follows that the line
bundle M̃χ

Ẽ
|E extends (uniquely) to a line bundle M̃χ

C on C. Moreover, since E → Ẽ

is a μn-torsor, we obtain an action of μn on M̃χ
C . Since μn is of multiplicative type,

hence reductive (i.e., its representations split up into direct sums of representations by
characters), we thus obtain that the μn-invariant subspace

Γ(C,M̃χ
C)μn ⊆ Γ(C,M̃χ

C)

is a direct summand of the A-module Γ(C,M̃χ
C) (which, by Riemann-Roch, is a projective

A-module of rank n). Since, after one inverts q, this invariant subspace may be identified
with Γ(Ẽ,M̃χ

Ẽ
)⊗AA[q−1] (which, by Riemann-Roch, is a projective A[q−1]-module of rank

1), we thus obtain that this invariant subspace Γ(C,M̃χ
C)μn is a projective A-module of

rank 1. Since Pic(A) is trivial, we thus obtain that Γ(C,M̃χ
C)μn is a free A-module of rank

1. Thus, we may choose a generator sχ of this module, i.e.:

A · sχ = Γ(C,M̃χ
C)μn

Thus, if one pulls sχ back to C∞
Ŝ

, we see that

sχ|C∞
Ŝ

may be thought of as a topological A-linear combination

σχ

of the elements discussed in Proposition 2.2 which satisfies, for all points α of Zet × μn

(valued in some scheme),

α(σχ) = χ−1(α) · σχ
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where the action of α on the left-hand side is via the usual action of Zet×μn on expressions
as in Proposition 2.2, and we regard the character χ as a character on Zet × μn via the
natural surjection Zet × μn → (Zet/n) × μn = Πn.

Next, let us recall the exact sequence

0 → OC → TC → τE |C → 0

of the discussion following Chapter III, Corollary 4.3. The extension class of this exact

sequence is precisely the torsor defined by the universal extension E
†
C → C. By the

discussion above concerning the relationship between the universal extensions E† and Ẽ†,
it follows that this exact sequence descends naturally to an exact sequence

0 → O
C̃
→ T̃

C̃
→ τE |C̃ → 0

Thus, we see that we obtain a natural action of μn on Γ(C,TC ⊗OC
M̃χ

C). Then just
as in the discussion of sections of M̃χ, we obtain (by applying Riemann-Roch and the
reductiveness of μn) that the μn-invariant subspace

Γ(C,TC ⊗ M̃χ
C)μn ⊆ Γ(C,TC ⊗ M̃χ

C)

fits into an exact sequence of A-modules:

0 → Γ(C,M̃χ
C)μn → Γ(C,TC ⊗ M̃χ

C)μn → Γ(C,M̃χ
C)μn ⊗A (A · U ∂

∂U
) → 0

In particular, we may choose a section

Sχ ∈ Γ(C,TC ⊗ M̃χ
C)μn

whose image in Γ(C,M̃χ
C)μn ⊗A (A ·U ∂

∂U ) is equal to sχ ·U ∂
∂U . If we pull-back Sχ to C∞

Ŝ
,

then we may think of S∞χ as a section of TC ⊗ L⊗n
C∞

Ŝ

which satisfies

α(S∞χ ) = χ(α)−1 · S∞χ

for all points α of Zet × μn (valued in some scheme).

On the other hand, κ defines a section

κT ∈ Γ(C∞
Ŝ

, TC |C∞
Ŝ

)
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whose image in Γ(C∞
Ŝ

, τE |C∞
Ŝ

) is U ∂
∂U . Since κ descends to κ̃ (as discussed above), the

natural action of μn on κT is trivial. Moreover, by Chapter III, Theorem 5.6, it follows
that

1et(κT ) = κT + 1

In particular, the section

σχ · κT ∈ Γ(C∞
Ŝ

,L⊗n
C∞

Ŝ

⊗OC
TC)

satisfies

1et(σχ · κT ) = χ(1et)−1 · σχ · (κT + 1); α(σχ · κT ) = χ(α)−1 · σχ · κT

(where α is a point of μn valued in some scheme).

Thus, if we form the difference

ζχ def= S∞χ − σχ · κT ∈ Γ(C∞
Ŝ

,L⊗n
C∞

Ŝ

)

then we have:

1et(ζχ) = χ(1et)−1 · (ζχ − σχ); α(ζχ) = χ(α)−1 · ζχ

(where α is a point of μn valued in some scheme). Let us define

δχ(f) def= {χ(1et) · 1et(f)} − f

(Thus, formally, δχ(f ·g) = δχ(f) ·1et(g)+f ·δ(g), where δ(g) = 1et(g)−g is as in Chapter
III, §6.) Then we have

δχ(ζχ) = −σχ

Note that if χ is the trivial character, n = 2, and 2 ∈ O×, then ζχ is simply (in the
notation of Chapter III, §5)

“(ζ + C) · σ2”

for some C ∈ A.
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Now we would like to generalize ζχ in precisely the way we generalized ζ in Chapter
III, §6. To do this, we would like to consider extension polynomials – i.e., sections of the
sheaf Ret

E
†
C

of Chapter III, Proposition 6.1 – but this time (unlike in Chapter III, §6) with

coefficients that are sections of L⊗n
C∞

Ŝ

over C∞
Ŝ

. In other words, we would like to consider

sections of Ret

E
†
C

⊗OC
L⊗n

C over C∞
Ŝ

. Also, whereas before we considered Zet-invariant

extension polynomials, this time we would like to consider extension polynomials on which
Zet × μn acts via the character χ – i.e., polynomials which are (Zet × μn)-invariant when
considered as sections of Ret

E
†
C

⊗OC
(L⊗n

C∞
Ŝ

)χ. Other than these formal changes, however,

the proofs proceed just as for Chapter III, §6, Lemma 6.3, Theorem 6.4. The end result is
the following:

Theorem 3.1. Let r be a nonnegative integer, and χ ∈ Hom(Πn, (μn)S). Then there
exists a (Zet × μn)-invariant extension polynomial

f =
r∑

i=0

ζχ
r−i · T [i]

(where the coefficients lie in Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ)), such that ζχ
0 = σχ;

δχ(ζχ
r−i) + δχ(ζχ

r−i−1) + ζχ
r−i−1 = 0

(for all i); and all the ζχ
j ∈ Γ(C∞

Ŝ
, (L⊗n

C∞
Ŝ

)χ) are μn-invariant. In particular, we have

δχ(ζχ
j ) = −ζχ

j−1 + ζχ
j−2 − ... + (−1)j−1ζχ

1 + (−1)jζχ
0

(for all j). Finally, if ζ̂χ
0 , . . . , ζ̂χ

r satisfy the same conditions as ζχ
0 , . . . , ζχ

r , then for each
j = 0, . . . , r,

ζχ
j − ζ̂χ

j = some A−linear combination of ζχ
0 , . . . , ζχ

j−1

(where A = O[[q]]).

Remark. Just as in the non-twisted case (cf. Chapter III, §6, Theorem 6.4), we may take
ζχ
1 = ζχ. Also, (just as in Chapter III, §6, Remark 2) everything we did here can also be

done in the complex analytic context.
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Similarly, one may generalize the canonical Schottky-Weierstrass zeta functions of
Chapter III, §7, to the present twisted context, as follows. First, we assume for the
remainder of the § that O is a finite extension of Q. Then we define the operator δ∗ on
L⊗n

C∞
Ŝ

by

f �→ δ∗(f) def=
1
n
· ∇(U ∂

∂U )(f)

where ∇ is the connection induced on L⊗n
C∞

Ŝ

= L⊗2m
C∞

Ŝ

by the connection on L⊗2
C∞

Ŝ

of Chapter

III, Theorem 5.6; and U is the standard multiplicative coordinate on E
Ŝ

(as in §2). One
checks easily that the natural action of μn on δ∗ is trivial and that:

[δ∗, δχ] = χ(1et) · 1et

Also, just as in Chapter III, §7, we may also define a tautological connection (on the
universal extension), as well as a corresponding differential operator (δtaut)∗. Thus, by the
same formal arguments as those used to derive Chapter III, Theorem 7.4, in Chapter III,
we obtain the following result:

Theorem 3.2. (Divided Power Twisted Canonical Schottky-Weierstrass Func-

tions) Let χ ∈ Hom(Πn, (μn)S), ζPD,χ
0

def= σχ ∈ Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ). Write (for r ∈ Z≥0)

ζPD,χ
r

def=
1
r!

(δ∗)rζPD,χ
0

(and let ζPD,χ
r

def= 0 if r < 0). Then δ∗(ζPD,χ
r ) = (r+1)·ζPD,χ

r+1 , (δχ)r(ζPD,χ
r ) = (−1)r ·ζPD,χ

0

(if r ≥ 0);

δχ(ζPD,χ
r ) =

∑r−1
i=0 (−1)i+r 1

(r−i)!ζ
PD,χ
i = −ζPD,χ

r−1 + 1
2 · ζPD,χ

r−2 + . . . + (−1)r · 1
r! · ζ

PD,χ
0

(for all r ∈ Z). Moreover, all of the ζPD,χ
i (for i ∈ Z) are μn-invariant, and, in fact, the A-

submodule of Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ) generated by ζPD,χ
0 , . . . , ζPD,χ

r is equal to the A-submodule of

μn-invariant sections of Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ) which are annihilated by (δχ)r+1. In particular,

this submodule is equal to the A-submodule of Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ) generated by the functions

denoted “ζPD,χ
0 , . . . , ζPD,χ

r ” in Theorem 3.1. Finally, the polynomial

ζPD,χ
r [T ] def=

r∑
i=0

ζPD,χ
i · T r−i

(r − i)!
= ζPD,χ

0 · T r

r!
+ ζPD,χ

1 · T (r−1)

(r − 1)!
+ . . . + ζPD,χ

r−1 · T + ζPD,χ
r
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(∈ Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ[T ])) is (Zet × μn)-invariant relative to the natural action of Zet × μn

on C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ, and the action of Zet × μn on T given by 1et(T ) = T + 1, α(T ) = T

(∀α ∈ μn).

Remark. Just as was the case with Theorem 3.1, Theorem 3.2 also has a complex analytic
version. We leave the routine details to the reader. Also, just as was the case for Chapter
III, Theorem 7.4, it is clear from the formula for δχ(ζPD,χ

r ) that the denominators that
occur are “essential” (i.e., they cannot be eliminated as in the case of Theorem 3.1 simply
by “redefining the integral structure”).

Finally, just as in Chapter III, §7, we may also define the twisted version of binomial
canonical Schottky-Weierstrass zeta functions as follows. First, let us observe that there
is a unique integer iχ satisfying −m ≤ iχ < m such that the monomials of Propostion
2.2, when considered as sections of (L⊗n

C∞
Ŝ

)χ), are μn-invariant if and only if the integer i

(∈ {−m,−m+ 1, . . . , 0, . . . ,m− 1} – cf. Proposition 2.2) is equal to iχ. Then we have the
following result:

Theorem 3.3. (Binomial Twisted Canonical Schottky-Weierstrass Functions)

Let χ ∈ Hom(Πn, (μn)S), ζBI,χ
0

def= σχ ∈ Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ). Write (for r ∈ Z≥0) ζBI,χ
r

def=(
δ∗− iχ

n
r

)
(ζBI,χ

0 );

ζBI,χ
r [T ] def=

(
δ∗ + T − iχ

n

r

)
(ζBI,χ

0 ) =
r∑

j=0

ζBI,χ
j · T [r−j]

Then the ζBI,χ
n , ζBI,χ

n [T ]’s satisfy the properties of Theorem 3.1 (where we take “ζχ
n” of

Theorem 6.4 to be ζBI,χ
n ; “f” of Theorem 6.4 to be ζBI,χ

n [T ]). In particular, the ζBI,χ
n [T ]’s

are Zet-invariant. Finally, the ζBI,χ
n [T ]’s are integral over Z.

Proof. It remains only to verify integrality over Z. But this follows from observing that,
by the definition of iχ, ζBI,χ

0 may be thought of as a series in the monomials ket(U iχ · θm)
(for k ∈ Z) of Proposition 2.2. Moreover, the operator δ∗ − iχ

n acts on the monomial

ket(U iχ · θm) = qm·k2+iχ·k · U2mk+iχ · θm

by multiplication by 1
n (2mk + iχ) − iχ

n = k. Thus, the operator
(
δ∗− iχ

n
r

)
acts on this

monomial by multiplication by
(

k
n

)
∈ Z, as desired. ©
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§4. Zhang’s Theory of Metrized Line Bundles

In this §, we review the theory of [Zh] in the case of elliptic curves. Roughly speaking,
this theory allows one to compute intersection numbers of vertical divisors in the special
fiber of an elliptic curve with multiplicative reduction using the techniques of classical har-
monic analysis on a circle. In fact, here, we will use a slight generalization of Zhang’s
1-dimensional theory to the 2-dimensional case, so in the following, we will give precise
definitions and statements of basic facts. The proofs, however, will be omitted since they
are entirely the same as those of [Zh].

Let R be a valuation ring whose valuation group is an ordered submodule of R. We
denote its valuation

| − |R : R → R

and assume that we are given an element π ∈ R such that |π|R = e−1, and all positive
rational powers of the ideal π · R exist (as ideals of R). In other words, we want to think
of the copy of R that contains the valuation group of R as being “−R · log(π)” (where
log(π) is to be regarded as a formal symbol). We denote the quotient field of R by F .

Let V be a finite dimensional F -vector space. Then we will refer to as a metric on V
any map

| − |V : V → R

such that: (i) |λ · v|V = |λ|R · |v|V , for all λ ∈ R, v ∈ V ; (ii) |v + w|V ≤ max(|v|V , |w|V ),
for all v,w ∈ V ; (iii) the set

MV
def= {v ∈ V | |v|V ≤ 1}

is bounded (i.e., given any basis v1, . . . , vn of V , there exists a λ ∈ R such that MV ⊆∑n
i=1 R · λ · vi). Thus, MV forms an R-submodule of V which is bounded, saturated — in

the sense that

M =
⋂

r∈Q>0

(π−rM)

— and generates V over F . Conversely, given any bounded, saturated R-submodule M
of V which generates V over F , one can naturally define a metric | − |V on V such that
M = MV as follows: For any nonzero rational section v ∈ V , we let

|v|V def= e−r0
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where r0 ∈ R is the supremum of the set of rational numbers r such that the section
π−r · v ∈ M . In other words, metrics on V are equivalent to bounded, saturated R-
submodules of V that generate V over F . This makes it clear, for instance, how to define
tensor products of metrics. Indeed, the tensor product of | − |V , | − |W on V ⊗F W is the
metric corresponding to the saturation (i.e., the smallest saturated module containing the
given module) of the bounded R-submodule Image(MV ⊗R MW ) ⊆ V ⊗F W .

If dimF (V ) = 1, then a metric | − |V on V is completely determined by its value on
any fixed nonzero element v ∈ V . Thus, it follows that the metrics on V naturally form an
(additive) torsor over R. Moreover, the metrics on the F -vector space F may be naturally
identified (by looking at the value of the metric on 1 ∈ F ) with R itself.

Next, let us return to the set-up of §2. Recall that we have a one-dimensional semi-
abelian variety

E → S

equipped with a compactification C → S. Here, S = Spec(A), A = O[[q]]. Now let (for
N ≥ 1 an integer)

AN
def= A[q1/N ]; A∞

def=
⋃

N≥1

AN ; SN
def= Spec(AN ); S∞

def= Spec(A∞)

Thus, SN is a finite, flat S-scheme, and S∞ is the projective limit of the SN ’s. Also, let
us write

US
def= Spec(A[q−1]) ⊆ S

and USN
, US∞ , etc. for the inverse images in SN , S∞, etc. of US . Note that E|US

×US
USN

has a unique regular semi-stable model

CN → SN

over SN . We denote the complement of the nodes of CN by

EN → SN

Thus, the special fiber (i.e., the zero locus of q1/N ) of EN is a union of N copies of (Gm)O.
Write

C∞
def= lim

←−
CN → S∞ = lim

←−
SN
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for the inverse limit of the CN → SN , where N ranges over the multiplicative semigroup
of positive integers. Thus, note that we have natural open immersions

EN ×SN
S∞ ↪→ C∞

If we take the union of these open subschemes of C∞ over N , we obtain an open subscheme

E∞ ⊆ C∞

which has the structure of a smooth group scheme over S∞.

Let us refer to the prime of A∞ generated by the qr for all positive rational numbers
r as the central prime of A∞. The localization of A∞ at the central prime is a valuation
ring with value group Q. For geometric objects over S∞, we shall refer to the fiber of such
an object over the central prime of S∞ as the special, or central, fiber of the object.

Observe that the connected components of the special fiber of EN may be naturally
identified with

1
N

Z/Z

Here, the Z should be thought of as “Z · log(q)” (where log(q) is a formal symbol). Indeed,
just as in §2, C∞

Ŝ
formed a Galois cover of C

[n]

Ŝ
with Galois group n · Zet such that the

(irreducible) components of the special fiber of C [n] could be naturally identified with
Zet/N · Zet, there exists a natural infinite Galois cover of (CN )

ŜN
with Galois group Z

(which is a blow-up of the pull-back to ŜN of the Z-Galois cover C∞
Ŝ

→ C
Ŝ
) such that the

components of the special fiber of CN may be identified with 1
N Z/Z, as desired. By taking

the limit over N , we thus obtain that the components of the special fiber of C∞ may be
identified with

Q/Z ⊆ R/Z = S1

In the following, we would like to do functional analysis on S1. To this end, we define

Func(S1)

to be the set of piecewise smooth continuous functions on S1, i.e., continuous functions
that are infinitely differentiable, except at a finite number of points of S1.

A crucial ingredient of the theory of [Zh] is the notion of “divisors on S1” (cf. [Zh],
§2.1). Let us write
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Div(S1) def= Z[Q/Z]

for the set of finite formal sums of elements of Q/Z with Z-coefficients. We will regard
such formal sums as divisors on S1. Next, we let

Div(S1) def= Div(S1) ⊕ Func(S1)

be the group of compactified divisors on S1. Given a compactified divisor D + g (i.e.,
D ∈ Div(S1), g ∈ Func(S1), we define the curvature of D + g to be

hD+g
def= δD − Δ(g)

Here, δD is the delta distribution associated to the divisor D, i.e., if f ∈ Func(S1), and
D =

∑
i ci · pi (for ci ∈ Z; pi ∈ Q/Z), then

< δD, f >
def=
∑

i

ci · f(pi)

while Δ(g) is the distribution obtained by applying the Laplacian operator Δ to g, i.e., if
f ∈ Func(S1), then

< Δ(g), f >
def= −

∫
S1

f · ∂2g

∂θ2

(where ∂/∂θ is the standard unit tangent vector on S1, i.e., the tangent vector whose
reciprocal dθ satisfies

∫
S1 dθ = 1). One also defines an intersection pairing on compactified

divisors on S1 by:

(D1 + g1,D2 + g2)
def=< δD1 , g2 > + < δD2 , g1 > −

∫
S1

g1Δ(g2)

Next, we would like to consider line bundles on E∞|US
. First, if p denotes a prime of

the special fiber of E∞, then we shall write

Op

for the completion of OE∞ at p, and Kp for its quotient field. Thus, Op is a valuation ring
with valuation group equal to Q (times “log(q)”). By the above discussion, such p are in
natural bijective correspondence with the set Q/Z.
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Definition 4.1. We define a pre-metrized line bundle (L, | − |L) on E∞ to be a pair
(L, | − |L) consisting of a line bundle L on E∞|US

, together with a set of metrics (as
defined above)

| − |L = {| − |Lp}p

(where p ranges over all primes in the special fiber of E∞) for the one-dimensional Kp-

vector space Lp
def= L ⊗OE∞ Kp.

We will call a pre-metrized line bundle (L, | − |L) a metrized line bundle if for some
nonzero rational section φ of L over E∞, the real-valued function defined on Q/Z ⊆ S1 by

p �→ −log(|φ|Lp)

is the restriction to Q/Z ⊆ S1 of a function in Func(S1). We denote the group of metrized
line bundles on E∞ by Pic(E∞).

Remark 1. The definition of a metrized line bundle given here is slightly different from that
of [Zh]. Nevertheless, the metrized line bundles that are ultimately dealt with in [Zh] (cf.
[Zh], §2.5) are precisely the sort defined in Definition 4.1. In [Zh], however, such bundles
are not given an explicit name.

Remark 2. If L is a line bundle (in the usual sense) on E∞ obtained by pull-back from a
line bundle on CN for some N , then the metrics |− |Lp given by letting the absolute value

of a generator of L at p be equal to 1 define on L the structure of a metrized line bundle.
Thus, the notion of a metrized line bundle on E∞ generalizes the notion of a line bundle
on E∞ obtained by pull-back from a line bundle on CN .

One also has a notion of compactified divisors on E∞, corresponding to the notion of
a metrized line bundle. This group of compactified divisors is defined by

Div(E∞) def= Div(E∞|US
) ⊕ Func(S1)

(where “Div(E∞|US
)” is the usual group of Weil divisors on the US-smooth scheme E∞|US

).
Any divisor compactified divisor D+g on E∞ defines a metrized line bundle OE∞(D+g) =
(L, | − |L) as follows: First of all, if D is a Weil divisor on E∞|US

, then taking the closures
of its irreducible components defines a Weil divisor D ⊆ E∞ on E∞. Moreover, since
E∞|US

is quasi-compact, and E∞ is an inverse limit of regular schemes, it follows that D
is, in fact, a Cartier divisor (cf. the discussion of the morphism ρ below for more details).
Thus, we obtain a line bundle L on E∞. Let L be the restriction of L to E∞|US

. Then it
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remains to define, for each p ∈ Q/Z, a metric | − |Lp on Lp. This metric is obtained by

letting generators of L at p have absolute value exp(−g(p)).

This correspondence D + g �→ OE∞(D + g) thus defines a surjection

Div(E∞) → Pic(E∞)

Under this correspondence, if v ∈ 1
N Z/Z is a component in the special fiber of CN – which

thus defines a line bundle on CN – then the element of Pic(E∞) corresponding to this line
bundle (cf. Remark 2 above) is the image under the above surjection of the compactified
divisor g ∈ Func(S1), where g is the piecewise linear function on S1 which is linear on the
complement of 1

N Z/Z, equal to 1
N at v, and equal to 0 at all points of ( 1

N Z/Z)\{v}.
Next, we recall that one has a natural morphism

ρ : Div(E∞|US
) → Div(S1)

defined as follows: To define ρ, it suffices to define ρ on each prime divisor in E∞|US
.

First, we set ρ to be 0 on all prime divisors which are not US-flat. If DUS
⊆ E∞|US

is
US-flat, then since E∞|US

is an inverse limit of regular schemes, DUS
will be a Cartier

divisor, hence, in particular, a US-scheme of finite presentation. Thus, DUS
will arise by

base change from some divisor (DUS
)N ⊆ EN |US

. Write

DN ⊆ CN

for the closure of (DUS
)N in CN . Let D′N → DN be the normalization of DN . Thus,

D′N → SN is finite and flat (since SN is regular of dimension 2 and D′N is normal, hence
has depth 2). Note that since the prime V (q1/N ) ⊆ SN is regular of height 1 and has
characteristic zero residue field, it follows (by Abhyankar’s Lemma) that the ramification
of any ramified extension of the localization of OSN

at this prime may be annihilated by
adjoining roots of q to OSN

. In particular, by taking N sufficiently large, we may assume
that D′N → SN is étale at all characteristic 0 primes of height 1. But then it follows from
the fact that CN is regular, that no characteristic 0 height 1 prime of D′N can map to a
node of CN . (Indeed, if R is a complete discrete valuation ring, and R′ is an unramified
extension of R (so R′ is also a complete discrete valuation ring), then any R′-valued point
of R[[x, y]]/(xy − π) (where x, y are indeterminates, π is a uniformizer of R) would imply
the existence of an R-homomorphism R[[x, y]]/(xy − π) → R′ for which the images of x
and y lie in the maximal ideal mR′ . But this implies that the image of π in R′ lies in
m2

R′ , which contradicts the assumption that R′ is unramified over R.) Thus, there exists
a closed subscheme FN ⊆ DN of positive characteristic (i.e., such that FN ⊗ Q = ∅) such
that DN\FN ⊆ EN . In particular, the closure D∞ of DUS

in C∞ will also satisfy:

D∞\F∞ ⊆ E∞
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for some closed subscheme of positive characteristic F∞ ⊆ D∞. For each characteristic 0
height 1 prime p of D′N , let us write Comp(p) ∈ Q/Z for the irreducible component of the
special fiber E∞ that contains p. Then we define

ρ(DUS
) def=

∑
p

[k(p) : Q(O)] · Comp(p)

where p ranges over the characteristic 0 height one primes of D′N ; k(p) is the residue field of
p; Q(O) is the quotient field of O = AN/(q1/N ); and “[∼:∼]” denotes the degree of a field
extension. One checks easily that (for N sufficiently large) this definition is independent
of N . This completes the definition of ρ.

Now that we have the morphism ρ, we may define an intersection pairing on Div(E∞)

Div(E∞) ×′ Div(E∞) → Div(S∞) def= Div(S∞) ⊕R

(where “×′” denotes pairs of compactified divisors D1 + g1, D2 + g2 such that the generic
points of the supports of D1 and D2 do not intersect) as follows: If D1, D2 are (Cartier)
divisors on E∞|US

such that the generic points of their supports do not intersect, then
taking the closures of their supports defines (Cartier) divisors D1,D2 on E∞|US

(cf. the
discussion above). Thus, we define

i(D1,D2) ∈ Div(S∞)

as the usual intersection divisor D1 · D2 of D1 and D2. Then the intersection pairing for
compactified divisors is defined by:

(D1 + g1,D2 + g2)
def= i(D1,D2) + (ρ(D1) + g1, ρ(D2) + g2)

(where the second “(−,−)” is an intersection number of compactified divisors on S1, hence
∈ R).

Ultimately, we shall wish to do intersection theory not over “local objects” such as
S, but over, for instance, (M1,0)Z or finite flat coverings of (M1,0)Z. In that sort of
global context, one can “glue together” the usual intersection theory over (M1,0)Z with
the intersection theory of [Zh] to obtain a global intersection theory for line bundles on the
tautological log elliptic curve over coverings of (M1,0)Z which are equipped with a metric
“at infinity.” We leave the “general nonsense” details to the reader.

Next, we would like to consider the curvatures of compactified divisors and metrized
line bundles. If D + g ∈ Div(E∞), then its curvature is defined to be:

hD+g
def= hρ(D)+g
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(where the right-hand side is the curvature of the compactified divisor ρ(D)+g ∈ Div(S1)).
If L = OE∞(D + g) is a metrized line bundle, then we define the curvature of L to be:

hL
def= hD+g

This definition is independent of the choice of D + g (cf. [Zh], §2.5). Note that in both
cases, the curvature is a distribution on S1. Its integral over S1 is given by (cf. [Zh], §2.5):

∫
S1

hL = deg(L|US
)

the degree of L on the generic fiber of E∞. Intuitively speaking,

The value of the curvature hL at a point a ∈ Q/Z ⊆ S1 should be thought
of as the degree of the “restriction” of L to the irreducible component of
the special fiber of C∞ corresponding to a.

Definition 4.2. A metrized line bundle or compactified divisor on E∞ is said to be
admissible if its curvature is the distribution given by a constant function on S1.

If a metrized line bundle L is admissible, then its curvature hL is, in fact, the constant
given by deg(L|US

).

Proposition 4.3. If L1 = (L1, |−|L1) and L2 = (L2, |−|L2) are metrized line bundles on
E∞ such that L1

∼= L2 (as line bundles on E∞|US
) and hL1

= hL2
, then L1

∼= L2⊗OE∞(C)
(as metrized line bundles), where C ∈ Func(S1) is a constant function. In particular, if
L1 = (L1, | − |L1) and L2 = (L2, | − |L2) are both admissible metrized line bundles on E∞
such that L1

∼= L2 (as line bundles on E∞|US
), then L1

∼= L2 ⊗OE∞(C) (as metrized line
bundles), where C ∈ Func(S1) is a constant function.

Proof. By considering L1 ⊗ L−1

2 , it suffices to consider the case where L1 is the trivial
metrized line bundle. Then L2 is defined by some compactified divisor g ∈ Func(S1).
Moreover, since hL1

= 0, we have hg = −Δ(g) = 0, i.e., g is a continuous function on S1

whose second (distributional) derivative is zero. But it is easy to see that such a function
g is necessarily constant. ©

The notion of admissible metrized line bundles will be of fundamental importance
in the following discussion. Thus, it is of interest to construct admissible metrized line
bundles. For instance, given a horizontal (i.e., S∞-flat) divisor
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D ⊆ E∞

one would like to know explicitly which function gD ∈ Func(S1) is the unique function
such that

(i)
∫
S1 gD = 0

(ii) D+gD is admissible ⇐⇒ hD+gD
= δρ(D)−Δ(gD) = δρD

+∂2gD

∂θ2 is constant

Such a function gD will be called the Green’s function for D. Note that gD depends only
on the divisor ρ(D) on S1. Thus, we will also write gρ(D) for gD.

Let D ∈ Div(S1) be a divisor on S1. We would like to consider its Green function gD.
The simplest case is the case where

D = [0]

i.e., the origin of [0] ∈ Q/Z ⊆ R/Z = S1. In this case, we will denote the associated
Green’s function by φ1.

Proposition 4.4. The Green’s function φ1 associated to the origin [0] is given, for
|θ| ≤ 1

2 , by:

φ1(θ) =
1
2
θ2 − 1

2
|θ| + 1

12

where θ is the standard coordinate on R (regarded as a covering of R/Z = S1). In
particular, φ1(θ) ∈ Q, for all θ ∈ Q. Alternatively, in terms of Fourier expansions on S1,
it is given by:

φ1(θ) =
1

4π2
·
∑

0 
=n∈Z

1
n2

e2πinθ

In particular, φ1(0) = 1
12 (where we recall that we think of the values of φ1 as being in

“log(q)” units) is the maximum value attained by φ1, and φ1(1
2 ) = − 1

24 is the minimum
value attained by φ1.

Proof. The polynomial representation of the Green’s function φ1 is given in [Zh], §a.8, p.
193. The Fourier expansion may be derived as the unique (topological) linear combination
of e2πin’s (for n ∈ Z) whose first derivative is square integrable on S1 (hence is continuous),
whose value at 0 is 1

12 , and whose second derivative is the distribution defined by
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1 − δ[0] = −
∑

0 
=n∈Z

e2πin

on S1. The assertions concerning the maximum and minimum values of φ1 follow from
elementary calculus. ©

Corollary 4.5. Let a, b ∈ Q/Z. Then the Green’s function φa,b associated to the divisor
a − b on S1 is the unique piecewise linear function on S1 which is linear (with respect to
θ) away from a and b, has second (distributional) derivative equal to δb − δa, and is such
that

∫
S1 φa,b = 0. Moreover, φa,b has a global minimum at b and a global maximum at a.

Proof. This follows from the polynomial representation of Proposition 4.4 by direct com-
putation. ©

Corollary 4.6. Let N be a positive integer. Write φN for the Green’s function of the
divisor

∑N−1
i=0 [ i

N ]. Then the Fourier expansion of φN is given by:

φN (θ) =
1

4π2 · N ·
∑

0 
=n∈Z

1
n2

e2πinθ·N =
1
N

φ1(N · θ)

In particular, φN (0) = 1
12·N (where we recall that we think of the values of φ1 as being

in “log(q)” units) is the maximum value attained by φN , and φN ( 1
2N ) = − 1

24N is the
minimum value attained by φ1.

Proof. The assertion concerning the Fourier expansion follows by adding up the translates
of the Fourier expansion of Proposition 4.4. The assertions concerning the maximum and
minimum values of φN follow by thinking of φN (θ) as 1

N · φ1(N · θ). ©

Note that the use of Green’s functions allows one to construct metrized line bundles
with arbitrary prescribed restrictions to the special fiber of E∞. Indeed, suppose we start
out with two horizontal divisors D1,D2 ⊆ E∞, both of degree d (on E∞|US

). Then consider
the metrized line bundle

L def= OE∞(D1 + gD1 − gD2)

The restriction of L to a component of the special fiber of E∞, which amounts to the
curvature hL of L evaluated at the point of S1 corresponding to that component, is given
(cf. Definition 4.2) by:
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hL = δD1 − Δ(gD1) + Δ(gD2) = hD1+gD1
− hD2+gD2

+ δD2

= d − d + δD2 = δD2

i.e., despite the fact that on the generic fiber E∞|US
of E∞, L is just the line bundle

associated to the divisor D1, on the special fiber of E∞, L looks as if it is the line bundle
associated to the divisor D2! This sort of metrized line bundle will play a key role in this
paper.

§5. Theta Groups and Metrized Line Bundles

We maintain the notation of §4. Let d be a positive integer; g ∈ Func(S1). In this §,
we would like to study the metrized line bundle on E∞ given by:

L def= OE∞(d[e] + g)

(where e ∈ E∞(S∞) is the origin of the group object E∞ → S∞, and [e] is the horizontal
divisor defined by its image). In particular, we will discuss the case where the theta groups
of §1 act on L, and compute (when the base is global) the degree of the push-forward of L
to such a global base. We observe that although the issue of the behavior of theta groups
for degenerating elliptic curves is also discussed in [MB], it is the opinion of the author
that the use of Zhang’s theory of metrized line bundles substantially clarifies the behavior
of theta groups for degenerating elliptic curves.

Note first of all that when we restrict to US , we are in the situation discussed in §1.
In particular, there is a theta group (GL)US

associated to OE|US
(d · [e]). The group scheme

(KL)US
of d-torsion points of E|US

fits into an exact sequence

0 → (μd)US
→ (KL)US

→ (Z/dZ)US
→ 0

Although this exact sequence does not extend over S, if one base-changes to S∞, then it
extends naturally to an exact sequence of group schemes over S∞:

0 → μd|S∞ → KL|S∞ → (Z/dZ)|S∞ → 0

where KL|S∞ ⊆ E∞ is a closed subgroup scheme. In fact, this exact sequence splits, so we
have a noncanonical isomorphism

KL|S∞ ∼= {μd × (Z/dZ)}|S∞

In the following, we will denote KL|S∞ by
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KL

Thus, the action of KL on E∞ preserves the line bundle L|US
. We would like to investigate

the extent to which it preserves L:

Proposition 5.1. The action of KL on E∞ preserves L if and only if translation by
1
d ∈ 1

dZ/Z ⊆ S1 on S1 preserves the curvature hL. We shall call such distributions on S1

d-invariant. For instance, if g = d · φ1 or g = d · φ1 − φd (cf. Corollary 4.6), then the
resulting curvature will be d-invariant.

Proof. The automorphisms of S1 induced by the action of KL on E∞ are precisely those
given by adding (integer) multiples of 1

d . Thus, the necessity of the condition hL(θ) =
hL(θ + 1

d ) is clear. To see that it is sufficient, we reason as follows. First of all, since SN

is regular of dimension 2, it suffices to prove the result in characteristic 0, i.e., in the case
where O is a finite extension of Q. But then KL is étale over S∞, so it suffices to prove
that the “physical” automorphisms of E∞ induced by S∞-rational points of KL preserve
L. Let α be such an automorphism of E∞ that induces the automorphism θ �→ θ + 1

d

on S1. Then Lα
def= α∗L is a metrized line bundle on E∞ which is isomorphic to L over

US . Moreover, by hypothesis, hL = hLα
. Thus, by Proposition 4.3, it follows that L

and Lα differ by a constant C ∈ R. If this constant C ∈ Q, then multiplying by qC

shows that L ∼= Lα. If not, then since α has order d, it follows that C defines a class in
H1(Z/dZ,R/Q) = Hom(Z/dZ,R/Q) = 0. In order words, it follows from the fact that
the automorphism α has finite order (while R/Q is torsion-free) that C ∈ Q, so L ∼= Lα,
as desired.

Thus, it remains to see that if g = d · φ1 or dφ1 − φd, then hL is invariant under
θ �→ θ + 1

d . But if g = d · φ1, then hL is a constant, so this is clear. Moreover, φd itself is
invariant under θ �→ θ+ 1

d , so adding Δ(φd) does not effect the invariance under θ �→ θ+ 1
d .

This completes the proof. ©

Thus, if hL is d-invariant, then by considering pairs (α, ι), where α is a point of KL
and ι : T ∗α L ∼= L (cf. §1), we obtain a theta group scheme

GL

over S∞ which extends (GL)US∞ . In particular, if f : E∞ → S∞ is the structure morphism,
then we may define the push-forward

f∗L
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as the (quasi-coherent) OS-submodule of the rank d vector bundle (f |US
)∗(L|US

) on US∞
consisting of sections whose absolute value is ≤ 1 with respect to the |−|Lp for all p ∈ Q/Z.

Then f∗L is equipped with a natural action of GL.

Since it is not difficult to construct a GL-module V which is a rank d vector bundle on
S∞ and on which Gm ⊆ GL acts via the standard character (cf. Example 1.2), it follows
(cf. Theorem 1.1 of §1; [MB], Chapitre V, Corollaire 2.4.3) that

f∗L ∼= M⊗OS∞ V

Here, M and its restriction MU to US∞ satisfy the following: MU is a line bundle on
US∞ ; and M is a quasi-coherent OS∞-submodule of j∗MU (where j : US∞ ↪→ S∞ is the
natural inclusion). Note that since US∞ is quasi-compact and MU (being a line bundle) is
of finite presentation, it follows that MU arises as the pull-back of a line bundle on some
USN

. Thus, MU extends to a line bundle M′ on S∞. In fact, we may even assume that
M′ ⊆ M (in such a way that M′|US

= M|US
). Next, let us observe that M is bounded in

the sense that there exists some positive rational number C such that

M′ ⊆ M ⊆ q−C · M′

(Indeed, this follows from the fact that L itself is “bounded.”) Moreover, M has the
property that a rational section of M is integral over S∞ if and only if it is integral over
US∞ as well as at the central prime V ({qr}r∈Q>0) ⊆ S∞. Since the localization of A∞ at
the central prime is a valuation ring with value group Q, it thus follows that M is of the
form

M =
⋂

r0≤r∈Q

q−r · M′

where r0 ∈ R≥0. In other words, the datum of M is equivalent to the datum of MU ,
together with a metric on MU at the central prime of S∞.

Definition 5.2. We shall refer to as a metrized vector bundle on S∞ any pair (F , | − |F )
consisting of a vector bundle F on US∞ , together with a metric on F at the central prime
of S∞. The rank of a metrized vector bundle (F , | − |F ) is defined to be the rank of the
vector bundle F .

If (F , | − |F ) is a metrized vector bundle, then by considering the sheaf of (nonzero)
sections of F whose | − |F ≤ 1 at the central prime, we naturally obtain a quasi-coherent
OS∞-module. Moreover, it follows from the discussion of metrics at the beginning of §4
– i.e., “metrics are equivalent to bounded, saturated submodules that generate over the
quotient field” – that the metric |− |F may be recovering from this quasi-coherent module.
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In other words, metrized vector bundles may be thought of as a special kind of quasi-coherent
OS∞-module.

On the other hand, any vector bundle F on S∞ (in the usual sense) naturally defines
a metrized vector bundle on S∞ (FU , | − |FU

) as follows: we let FU be the restriction of
F to US∞ ; | − |FU

be the metric corresponding to the module of integral sections at the
central prime of S∞. Thus, the (nonzero) sections of F may be recovered as those sections
of FU whose | − |FU

≤ 1 at the central prime. In particular, we see that the notion of a
metrized vector bundle on S∞ is a generalization of the usual notion of a vector bundle on
S∞.

Corollary 5.3. Let L def= OE∞(d[e]+g) be a metrized line bundle on E∞ whose curvature
hL is d-invariant. Then the push-forward sheaf f∗L on S∞ has a natural structure of
metrized vector bundle of rank d on S∞ equipped with an action of GL. Moreover, there
exists an isomorphism

f∗L ∼= M⊗OS∞ V

of GL-modules where M is a metrized line bundle on S∞ with trivial GL-action, and V is
a vector bundle (in the usual sense) on S∞ with GL-action on which Gm ⊆ GL acts via the
standard character. Finally, if L is, in fact, a line bundle (i.e., is the metrized line bundle
arising from some line bundle on some CN ), then f∗L (respectively, M) is a vector bundle
(respectively, line bundle) in the usual sense.

Now suppose (just for the remainder of this paragraph) that L is symmetric, i.e.,
preserved (up to isomorphism) by the automorphism of E∞ given by multiplication by
−1. It is easy to see that this is equivalent to the assertion that the curvature hL satisfies
hL(−θ) = hL(θ) (cf. the proof of Proposition 5.1). Then (just as in the discussion of §1) the
automorphism [−1] of E∞ given by multiplication by −1 induces an automorphism of GL.
Thus, just as in §1 (cf. especially the discussion following Theorem 1.6), if α ∈ E∞(S∞)
is any S∞-valued point, then we get an isomorphism (of metrized vector bundles on S∞)

L|T ∗α KL
∼= (L|α0) ⊗O

K0
L
OKL

(where K0
L

def= KL/2 · KL, and L|α0 is the line bundle on K0
L obtained by descending

L|T ∗α KL
). Thus, for instance, if d is odd, then we obtain a trivialization of the restriction of

L to the subscheme T ∗α KL. In particular, restriction to T ∗α KL defines (by composing with
the above isomorphism) a morphism of metrized vector bundles on S∞ with GL-action:

f∗L → (L|α0) ⊗O
K0
L
OKL
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In other words, this morphism allows us to think of global sections of L over E as being
(essentially) functions on the subscheme T ∗α KL. These functions may thus be thought of
as a sort of “metrized” or “Zhang-theoretic” version of the algebraic theta functions of
[Mumf1,2,3].

The following standard line bundles will be important in this paper, so we give them
explicit names. First, let us write

φev
d (θ) def= φd(θ +

1
2d

)

(notation as in Corollary 4.6). In the following, the objects with a superscript “ev” (for
“even”) will be important in the case when d is even. Nevertheless, all the definitions (of
both the objects with a superscript “ev” and the objects without a superscript “ev”) may
be made regardless of whether d is even or odd. Let

gst
def= d · φ1 − φd; gev

st
def= d · φ1 − φev

d

(notation as in Corollary 4.6). Write

Lst
def= OE∞(d[e] + gst); Lev

st
def= OE∞(d[e] + gev

st )

In other words (cf. the discussion at the end of §4), Lst (respectively, Lev

st ) is the metrized
line bundle whose restriction to the special fiber of C∞ looks like the divisor

d−1∑
i=0

[
i

d
] (respectively,

d−1∑
i=0

[(
1
2d

) + (
i

d
)] )

In particular, it is easy to see that if one takes a point α ∈ KL(S∞) whose image
under the projection KL → (Z/dZ) is 1 ∈ Z/dZ, and a point β ∈ E∞(S∞) such that
2 · β = α, then we have the following:

Lemma 5.4. If d is odd, then Lst
∼= OE∞(

∑d−1
i=0 [i · α]). If d is even, then Lev

st
∼=

OE∞(
∑d−1

i=0 [β + i · α]).

Proof. Indeed, one calculates easily that both sides are isomorphic generically and have
the same curvatures. (Note here that in the case of d even, if one does not shift by β, then
both sides will not even be isomorphic generically. Indeed, they will differ generically by a
line bundle of order precisely 2.) Thus, we conclude by Proposition 4.3 that the two sides
differ by some OE∞(C), for C ∈ R a constant. But now observe (cf. Proposition 4.4) that
gst (respectively, gev

st ) takes rational values on Q/Z. On the other hand, for any irreducible
component p of the special fiber of E∞, the order ordp at p of a rational function on E∞
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whose divisor on E∞|US
is d[e] −∑d−1

i=0 [i · α] (respectively, d[e] −∑d−1
i=0 [β + i · α]) lies in

Q. Thus, it follows that C may be taken to be in Q, hence (by multiplying by qC) it may
be taken to be 0. Thus, the two metrized line bundles are isomorphic, as desired. ©

Note, in particular, that if d is odd (respectively, even), then there exists a section s
of f∗Lst (respectively, f∗L

ev

st ) whose order ordp at any prime p ∈ Q/Z ⊆ S1 is precisely 0.
Indeed, such an s is given by applying the isomorphism of Lemma 5.4 to the section given
by the natural inclusion

OCd
⊆ OCd

(
d−1∑
i=0

[i · α]) (respectively, OCd
⊆ OCd

(
d−1∑
i=0

[β + i · α]))

It is clear that this section is nonzero at all the nodes of Cd, hence at every prime p ∈ Q/Z,
as desired.

Lemma 5.5. Suppose that L = OE∞(d[e] + g), where g = gst + ψ (respectively,
g = gev

st + ψ) if d is odd (respectively, even), and ψ ∈ Func(S1) is ≥ 0 and d-invariant
on S1. Suppose, moreover, that ψ vanishes at some point of Q/Z. Then the natural
identification between f∗L and f∗Lst (respectively, f∗L

ev

st ) over US∞ extends to an equality

f∗L = f∗Lst (resp f∗L = f∗L
ev

st )

over S∞.

Proof. To simplify notation, we assume in this proof that d is odd. (The even case is
entirely similar.) Now note that because ψ is d-invariant, it follows that GL acts on both
f∗L and f∗Lst. Thus, (cf. Corollary 5.3) it follows that for some r ∈ R, we have:

f∗L = q−r · f∗Lst

(i.e., the metrics on the two sides differ by a factor of er). Since ψ ≥ 0, it follows that
r ≥ 0. Suppose that r > 0. Then if s is any section of f∗Lst, then there exists a rational
number ε > 0 such that q−ε · s forms an integral section of f∗L. Now suppose that ψ
vanishes at the point p of Q/Z. By the preceding discussion, there exists an s such that s
does not vanish (as a section of Lst) at p. Thus, q−ε · s does not define an integral section
of Lst at p. On the other hand, since ψ(p) = 0, it follows that Lst and L have the same
integral structure at p. Thus, q−ε · s is not integral for L at p – a contradiction. This
completes the proof. ©
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Theorem 5.6. Suppose that L = OE∞(d[e] + g), where g = gst + ψ (respectively, g =
gev
st + ψ) if d is odd (respectively, even), and ψ ∈ Func(S1) is d-invariant on S1. Let

r0
def= inf

α∈S1
ψ(α)

Then the natural identification between f∗L and f∗Lst (respectively, f∗L
ev

st ) over US∞ ex-
tends to an equality

f∗L = q−r0 · f∗Lst (respectively, f∗L = q−r0 · f∗L
ev

st )

(i.e., the metric on f∗L is e−r0 times the metric on f∗Lst (respectively, f∗L
ev

st )) over S∞.

Proof. For simplicity, we assume that d is odd. First, consider the case where r0 ∈ Q and
there exists an α ∈ Q/Z such that ψ(α) = r0. Then by multiplying through by qr0 we see
that we reduce to the case r0 = 0. Moreover, the hypotheses of Lemma 5.5 are satisfied,
so we see that the result follows from Lemma 5.5. This completes the case where r0 ∈ Q
and ∃α ∈ Q/Z such that ψ(α) = r0.

To handle the general case, one simply approximates ψ by piecewise linear functions
ψi in Func(S1) which satisfy the hypotheses of the preceding paragraph. As ψi → ψ, it
is clear that the metric on the resulting f∗Li converges to the metric on the original f∗L
(corresponding to ψ). This completes the proof. ©

Corollary 5.7. Suppose that L = OE∞(d[e] + d · φ1). Then we have (on S∞)

f∗L = q
1

24d · f∗Lst (respectively, f∗L = q
1

24d · f∗L
ev

st )

if d is odd (respectively, even).

Proof. For simplicity, we assume that d is odd. Then we have ψ
def= d · φ1 − gst = φd.

Moreover, by Corollary 4.6, the r0 (as in Theorem 5.6) for this ψ is equal to − 1
24d . Thus

Corollary 5.7 follows from Theorem 5.6. ©

Next, we would like to switch gears, and consider the following situation. Suppose
that we are given a finite flat covering

B → (M1,0)Z

which is étale over (M1,1)Q (i.e., away from the divisor at infinity and finite primes). For
simplicity, we will also assume that B is regular, and that the completion of B at the
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inverse image of the divisor at infinity of (M1,0)Z is a disjoint union of “SN ’s” as in the
above discussion (for some appropriate N and base ring O). Let us write

IB

for the set of connected components of this union. Thus, for each ι ∈ IB , we have a
completion Bι

∼= SNι
, where SNι

is understood to be over a base ring Oι. Let

EB ⊆ CB → B

be the tautological log elliptic curve over B. Also, let us write UB ⊆ B for the complement
of the divisor at infinity of B. By gluing together EB |UB

and (E∞)ι at each ι, we thus
obtain a smooth group scheme

E∞,B → B∞

over B∞. (Thus, strictly speaking, B∞ is an algebraic stack in the finite, flat topology.)

Then let us observe that one can glue together the theory discussed above over “S”
with the usual theory of line bundles and vector bundles on EB and B to obtain a theory
of metrized line bundles on E∞,B and metrized vector bundles on B∞. Indeed, we shall
not write out the routine details, but the point is that a metrized line bundle on E∞,B is
a line bundle on E∞,B|UB

, together with a metric on the pull-back of this line bundle to
each E∞,B|US∞,ι

(where we use the notation “US∞,ι
” relative to the understanding that

each Bι
∼= SNι

has its associated US∞,ι
⊆ S∞,ι → SNι

, etc.). Similarly, a metrized vector
bundle on B∞ is a vector bundle on UB , together with a metric on the pull-backs of this
vector bundle to each US∞,ι

.

Thus, if we are given, for each ι ∈ IB , a function

gι ∈ Func(S1
ι )

then we may form a metrized line bundle

LB
def= OE∞,B

(d[e] +
∑

ι

gι)

in the obvious way. If we then push-forward this line bundle via fB : E∞,B → B∞, we
obtain a metrized vector bundle

(fB)∗LB

whose local structure was studied in Corollary 5.3 and Theorem 5.6 above. In particular,
let us note that it makes sense to speak of the degree of a metrized vector bundle on B∞.

140



This degree will, in general, be a real number. There are many ways that one can define
this degree. For instance, one may define it as the degree of the metrized line bundle
which is the determinant of the given metrized vector bundle. Thus, it suffices to define
the degree of a metrized line bundle on B∞. But a metrized line bundle on B∞ can easily
be seen to be equivalent (up to torsion) to an element of Pic(B) ⊗Z R. Thus, the degree
of a metrized line bundle may be defined by tensoring (over Z with R) the usual degree
map

Pic(B) → Pic(BQ) → Z

on the smooth proper curve BQ. Here, because (M1,0)Z is an algebraic stack, and B is a
covering of this stack, it is each to get confused about “what units” the degree is measured
in. In this paper, we adopt the convention of expressing all degrees in “log(q)” units. In
other words, in these units, the degree of the divisor at infinity of (M1,0)Z is equal to 1.

Theorem 5.8. Let d be an odd (respectively, even) positive integer, and suppose that we
are given functions

gι ∈ Func(S1
ι )

for each ι ∈ IB such that ψι
def= gι − (gst)ι (respectively, ψι

def= gι − (gev
st )ι) is d-invariant.

Let

rι
def= inf

α∈S1
ι

ψι(α)

and

LB
def= OE∞,B

(d[e] +
∑

ι

gι);

(Lst)B
def= OE∞,B

(d[e] +
∑

ι

(gst)ι) (respectively, (Lev

st )B
def= OE∞,B

(d[e] +
∑

ι

(gev
st )ι))

Then the natural identification of push-forwards between (fB)∗LB and (fB)∗(Lst)B (re-
spectively, (fB)∗(L

ev

st )B) over UB extends to an equality

(fB)∗LB = (
∏

ι

q−rι
ι ) · (fB)∗(Lst)B

141



(respectively, (fB)∗LB = (
∏

ι

q−rι
ι ) · (fB)∗(L

ev

st )B )

(i.e., the metric on (fB)∗LB at ι is e−rι times the metric on (fB)∗(Lst)B (respectively,
(fB)∗(L

ev

st )B)) over S∞. Moreover, we have

deg((fB)∗LB) = − 1
24

(d − 1) + d ·
∑

ι

rι

where the degree is in “log(q)” units.

Proof. The assertion concerning integral structures is a formal consequence of Theorem
5.6. Moreover, this assertion concerning integral structures allows one to immediately
reduce the assertion concerning degrees to the “standard cases” of (Lst)B , (Lev

st )B . In these
cases, the assertion concerning the degree is an immediate consequence of Grothendieck-
Riemann-Roch. We will carry out this computation in the following paragraph. Before
doing this, however, we note that when working with metrized line bundles, one does
not necessarily get the correct answer if one applies Grothendieck-Riemann-Roch to an
arbitrary metrized line bundle, since for an arbitrary metrized line bundle, “R1(fB)∗” is
not well-defined (i.e., one might get various “analytic torsion effects”). This is why we
reduced to the “standard cases” (Lst)B , (Lev

st )B which are (by Lemma 5.4), in fact, line
bundles in the usual sense (whose R1(fB)∗ is zero) over any covering of (M1,0)Z over
which the d-torsion points of E∞,B become rational.

Let us first treat the case of d odd. The case of d even is quite similar, and we will
remark at the end of the proof what must be modified in this case.

By Grothendieck-Riemann-Roch, we have

deg((fB)∗LB) = deg(R(fCB
)∗OCB

) +
1
2
[LB ] · ([LB ] − [ωE ])

(where fCB
: CB → B is the structure morphism; we take LB

def= (Lst)B ; and we use
brackets “[−]” to denote the Chern class of a line bundle). Here, ωE denotes the line
bundle on B given by considering the invariant differentials on EB . Then Serre duality
gives:

deg(R(fCB
)∗OCB

) = deg(ωE)

Next, we compute the various intersection numbers that appear by using the intersection
theory of compactified divisors reviewed in §4. First of all, since ωE is a line bundle on B
(as opposed to CB), and ω⊗12

E is well-known to be isomorphic to the line bundle associated
to the divisor at infinity, we have
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[LB ] · [ωE ] = d · deg(ωE) =
d

12

Next, we have

[LB ] · [LB ] = d · [LB ] · [e] +
∫
S1

gst · hLst

On the other hand,

[LB ] · [e] = d · [e]2 + gst(0) = −d · deg(ωE) + d · φ1(0) − φd(0)

= −d · ( 1
12

) + (d − 1
d
) · 1

12
= − 1

12d

while

∫
S1

gst · hLst
=

d−1∑
i=0

gst(
i

d
) = d · φd(0) − d · φd(0) = 0

Thus, we obtain that [LB ]2 = − 1
12 , so

deg((fB)∗LB) =
1
2
· (2 − 1 − d) · 1

12
= − 1

24
(d − 1)

as desired.

Finally, we consider the case of d even. In this case, we take LB
def= (Lev

st )B . It is then
immediate that

[LB ] · [ωE ] =
d

12

(just as in the odd case). Thus the only intersection number that remains to be computed
is [LB ]2.

We have

[LB ] · [LB ] = d · [LB ] · [e] +
∫
S1

gev
st · hLev

st

Moreover,
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[LB ] · [e] = d · [e]2 + gev
st (0) = −d · deg(ωE) + d · φ1(0) − φev

d (0)

= −d · deg(ωE) + d · φ1(0) − φd(
1
2d

)

= −d · ( 1
12

) + (d +
1
2d

) · 1
12

=
1

24d

while

∫
S1

gev
st · hLev

st
=

d−1∑
i=0

gev
st (

1
2d

+
i

d
)

= d · φd(
1
2d

) − d · φd(0) = φ1(
1
2
) − φ1(0) = − 1

24
− 1

12

Thus, [LB ]2 = d·( 1
24d )− 1

24 − 1
12 = − 1

12 (just as in the odd case), as desired. This completes
the proof in the even case. ©
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Chapter V: The Evaluation Map

§0. Introduction

In this Chapter, we prepare for the proof of the Comparison Isomorphism (which is
the main topic of this paper) in Chapter VI by studying the morphism which is to be the
“comparison isomorphism.” We refer to this morphism as the evaluation map. Our study of
the evaluation map consists of several parts. First, we must set up the notation and define
the evaluation map. This is done in §1, 2, 3. The evaluation map essentially consists
of restricting global sections of a certain natural metrized line bundle on the universal
extension of an elliptic curve to the torsion points of the elliptic curve. In §1, we discuss
the definition of the natural metrized line bundles that we use, and in §2, we construct
and study the elementary properties of the “evaluation map.” In §3, we observe that
the “étale-integral structures” defined in Chapter III, §6, are defined for arbitrary elliptic
curves (i.e., not just for degenerating elliptic curves, as in the discussion of Chapter III, §6),
and, moreover, that the functions in these étale-integral structures assume integral values
at the torsion points appearing in the definition of the evaluation map. This integrality
property will be important in the proof of the comparison isomorphism in Chapter VI.

After we have defined the evaluation map, we commence our study of the extent to
which it is an isomorphism. We begin, in §4, by studying the extent to which a certain
version of the evaluation map defined for degenerating elliptic curves is an isomorphism
modulo various powers of the q-parameter. This essentially amounts to studying the extent
to which the twisted Schottky-Weierstrass zeta functions of Chapter IV, §3, satisfy linear
relations modulo various powers of the q-parameter. It turns out that the calculations of
linear relations that we carry out in this § will yield the key technical machinery behind
the main result of this paper. Next, in §5, we study the determinant of the evaluation map
in the case when the base of the spectrum of an algebraically closed field. We then use the
theory of §5 to determine, in §6, precisely when the evaluation map is an isomorphism for
“sufficiently generic” elliptic curves.

§1. Construction of Certain Metrized Line Bundles

In this §, we continue the discussion of Chapter IV, §4,5, on metrized line bundles. In
particular, we introduce certain specific metrized line bundles which we will need in order
to construct the evaluation maps of §2 below. These metrized line bundles L are natural
in the sense that (it is not difficult to show that) they may be uniquely characterized
(up to tensor product with a line bundle pulled back from the base) by the following two
conditions:
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(i.) They are symmetric up to torsion (i.e., the pull-back of L via the
“multiplication by −1” map of an elliptic curve differs from L by a line
bundle which defines a torsion element of the Picard group), of relative
degree d.

(ii.) Their curvatures (at infinity) are invariant with respect to and
“concentrated at” (in the sense of “delta functions”) the d-torsion points
to which we will restrict them when we consider “evaluation maps” in
§2.

Condition (ii.) is natural considering that the main purpose of constructing these line
bundles is to restrict them (and their sections) to the subscheme of d-torsion points of
an elliptic curve. In fact, the “concentrated at” part of Condition (ii.) is inessential in
the sense that, by Chapter IV, Theorem 5.6, even if the curvature is not concentrated at
the d-torsion points, the push-forward of the metrized line bundle – which is what we are
ultimately interested in – is the same as that of the “maximal metrized subsheaf inside
the original line bundle among those subsheaves which are concentrated at the d-torsion
points.”

Let m ≥ 1 be an integer. We would like to consider the moduli of pairs

(E → S, η ∈ E(S))

where E → S is an elliptic curve, and η ∈ E(S) generates a cyclic subgroup of order m in
E. Over Z[ 1

m ], there is no problem in defining an algebraic stack of such pairs. Moreover,
it follows from the theory of [KM], Chapter 5 (cf. especially Theorem 5.1.1), that this
stack extends (uniquely) to a finite, flat covering

B → (M1,0)Z

of proper algebraic stacks over Z which is étale over Z[ 1
m ] away from the divisor at infinity;

near infinity, is obtained by adjoining some q
1
r , where r divides m to the ring of integers in

some cyclotomic extension of Q; and, at primes dividing m, parametrizes “points of exact
order m.” Moreover, the stack B is regular. In particular, B satisfies the hypotheses of the
discussion following Chapter IV, Corollary 5.7.

Next, let d be a positive integer. Then let us recall the metrized line bundles

(Lst)B
def= OE∞,B

(d[e] +
∑

ι

(gst)ι)

(Lev

st )B
def= OE∞,B

(d[e] +
∑

ι

(gev
st )ι)
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(where e is the origin of the group object fB : E∞,B → B∞; ι ranges over the connected
components of the divisor at infinity of B; and gst = d · φ1 − φd, gev

st = d · φ1 − φev
d are the

“standard Green’s functions” studied in Chapter IV, §4,5) of Chapter IV, Theorem 5.8.
Recall from the theory of Chapter IV, §4,5 (especially Chapter IV, Lemma 5.4), that on
each S1

ι (i.e., the “limit” of the set of irreducible components of the semi-stable models
over the component at infinity ι), (Lst)B (respectively, (Lev

st )B) looks like the (line bundle
associated to) the divisor

d−1∑
i=0

[
i

d
] (respectively,

d−1∑
i=0

[(
1
2d

) + (
i

d
)] )

on S1
ι . Finally, in Chapter IV, Theorem 5.8, we showed that if d is odd (respectively, even),

then

deg((fB)∗(Lst)B) = − 1
24

(d − 1) (respectively, deg((fB)∗(L
ev

st )B) = − 1
24

(d − 1) )

in “log(q)” units.

Next, let us observe that from the definition of the moduli stack B, we have a tauto-
logical m-torsion point

η ∈ E∞,B(B)

For each ι, one then has a divisor

ρι(η) ∈ Div(S1
ι )

given by the unique point of (Q/Z)ι ⊆ S1
ι defined by η at ι. Let us denote this unique

point by ηι ∈ (Q/Z)ι ⊆ S1
ι . Thus, ρι(η) = [ηι]. Now, if d is odd (respectively, even), then

let us consider the divisor

( d−1∑
i=0

[ηι +
i

d
]
)
−
( d−1∑

i=0

[
i

d
]
)
∈ Div(S1

ι )

(respectively,
( d−1∑

i=0

[ηι +
1
2d

+
i

d
]
)
−
( d−1∑

i=0

[
i

d
]
)
∈ Div(S1

ι ) )

Let us write φηι
(respectively, φev

ηι
) for the Green’s function associated to this divisor (cf.

the discussion preceding Chapter IV, Proposition 4.4). Thus, Δ(φηι
) = −∂2φηι

∂θ2 (where
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θ is the standard coordinate on S1
ι ) is equal to the delta distribution associated to this

divisor. Moreover, by Chapter IV, Corollary 4.5, the function φηι
is piecewise linear on

S1
ι , d-invariant (i.e., φηι

(θ + 1
d ) = φηι

(θ)), and attains its maximum at the points ηι + i
d

(respectively, ηι + 1
2d + i

d ), and its minimum at the points i
d , for i = 0, . . . , d − 1. Indeed,

it follows immediately from the definitions that

φηι
(θ) =

1
d
φd·ηι,0(d · θ) (respectively, φev

ηι
(θ) =

1
d
φd·ηι+

1
2 ,0(d · θ) )

where φ??,0(θ) is the function considered in Chapter IV, Corollary 4.5. Let us define

ψηι
(θ) def= φηι

(θ) − φηι
(0) (respectively, ψev

ηι
(θ) def= φev

ηι
(θ) − φev

ηι
(0) )

Thus, ψηι
≥ 0 (respectively, ψev

ηι
≥ 0) on S1

ι ; ψηι
(0) = 0 (respectively, ψev

ηι
(0) = 0).

We are now ready to define the metrized line bundles which are the main topic of the
present §. Let

(Lst,η)B
def= {T ∗η ((Lst)B)} ⊗OE∞,B

OE∞,B
(
∑

ι

ψηι
)

(respectively, (Lev

st,η)B
def= {T ∗η ((Lev

st )B)} ⊗OE∞,B
OE∞,B

(
∑

ι

ψev
ηι

) )

(where Tη : E∞,B → E∞,B is the morphism given by translation by η ∈ E∞,B(B)). Note
that the curvature of this metrized line bundle at ι is given by:

δ(∑d−1

i=0
[ηι+

i
d ]
) − Δ(ψηι

) = δ(∑d−1

i=0
[ i

d ]
)

(respectively, δ(∑d−1

i=0
[ηι+

1
2d + i

d ]
) − Δ(ψev

ηι
) = δ(∑d−1

i=0
[ i

d ]
) )

That is to say, although, over US, Lst,η (respectively, Lev

st,η) is “twisted,” i.e., differs from
(Lst)B (respectively, (Lev

st,η)B) by translation by η, “metrically speaking” (i.e., in the special
fibers at infinity) it looks as though it was never twisted by translation by η (respectively,
or even by the “ 1

2d ’s” on the S1
ι ’s at infinity).

Now Chapter IV, Theorems 5.6, 5.8, imply the following:

Proposition 1.1. If d is odd (respectively, even), then the automorphism of E∞,B given
by translation by η induces a natural equality:
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(fB)∗(Lst,η)B = (fB)∗(Lst)B (respectively, (fB)∗(L
ev

st,η)B = (fB)∗(L
ev

st )B )

of metrized vector bundles on B∞. In particular, deg((fB)∗(Lst,η)B) = − 1
24 (d − 1) (re-

spectively, deg((fB)∗(L
ev

st,η)B) = − 1
24 (d − 1)).

Remark. We note here, for future reference, that Proposition 1.1 implies that

d ·
{
− 1

12
(
d−1∑
i=0

i) + deg((fB)∗(Lst,η)B)
}

= −d · 1
24

{d(d − 1) + (d − 1)} = − 1
24

d(d2 − 1)

if d is odd (respectively,

d ·
{
− 1

12
(
d−1∑
i=0

i) + deg((fB)∗(L
ev

st,η)B)
}

= −d · 1
24

{d(d − 1) + (d − 1)} = − 1
24

d(d2 − 1)

if d is even). This computation will be of fundamental importance in the proof of the
comparison isomorphism in Chapter VI.

Note, moreover, that since the ψηι
’s are d-invariant, one can glue together the theories

of theta groups discussed in Chapter IV, §1, and Chapter IV, §5, to obtain a theta group
G(Lst)B

= G(Lst,η)B
(if d is odd) which fits into an exact sequence

1 → (Gm)B → G(Lst)B
= G(Lst,η)B

→ K(Lst)B
= K(Lst,η)B

→ 1

where K(Lst)B
= K(Lst,η)B

is the kernel of multiplication by d on E∞,B . Naturally, the
equality of metrized vector bundles in Proposition 1.1 is, in fact, an equality of modules
over this group scheme G(Lst)B

= G(Lst,η)B
. Similar statements hold for (Lev

st )B , (Lev

st,η)B ,
if d is even.

Next, let us compute some intersection numbers (cf. the theory of Chapter IV, §4,5).

Proposition 1.2. Suppose that τ is any d-torsion point ∈ E∞,B(T ) (i.e., d · τ = 0) over
some B-scheme T , where T → B is a finite, flat covering that satisfies the same hypotheses
as B (i.e., the hypotheses in the discussion following Chapter IV, Corollary 5.7). Suppose
that d is odd; then we have
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[τ ] · (Lst,η)B = −1
d

∑
ι

φ1(−d · ηι)

i.e.,

[τ ] · (Lst,η)B = 0

if m does not divide d;

[τ ] · (Lst,η)B = − 1
12d

(in “log(q)” units) if m divides d. Suppose that d is even; then we have

[τ ] · (Lev

st,η)B = −1
d

∑
ι

φ1(−d · ηι +
1
2
)

(in “log(q)” units).

Proof. For simplicity, we shall assume that d is odd. The even case is entirely similar.
The only difference is that, unlike in the odd case, the sum that one obtains in the even
case cannot be described in “closed form” (i.e., “= 0 if m does not divide d, = − 1

12d if m
divides d”).

By the above discussion on theta groups, it follows that for some line bundle N on T
such that N⊗d ∼= OT , we have:

T ∗τ ((Lst,η)B) = ((Lst,η)B) ⊗OT
N

Since [τ ] · [N ] = 0, it thus suffices to consider the case T = B; τ = e (i.e., the origin of
E∞,B). Since ψηι

(0) = 0, it follows that

[e] · [(Lst,η)B ] = [e] · T ∗η [(Lst)B ] = [−η] · [(Lst)B ]

= d · [−η] · [e] +
∑

ι

[−ηι] · (dφ1 − φd)

= d ·
{

[−η] · [e] +
∑

ι

[−ηι] · φ1

}
− 1

d
·
∑

ι

[−d · ηι] · φ1)

(where in the final equality, we use the fact that φd(θ) = 1
d · φ1(d · θ) (cf. Chapter IV,

Corollary 4.6)).
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Next, let us observe that since the curvature at each ι of the metrized line bundle
OE∞,B

(e + φ1) is (constant, hence) m-invariant, it follows (cf. Chapter IV, Proposition
5.1) that the m2-th power of OE∞,B

(e + φ1) is stabilized by translation by η and d · η (cf.
the discussion at the beginning of the proof involving the line bundle “N”). On the other
hand,

[OE∞,B
(e + φ1)] · [e] = [e]2 + φ1(0) = − 1

12
+ φ1(0) = 0

Thus, we obtain that

0 = [OE∞,B
(e + φ1)] · [−η] = [OE∞,B

(e + φ1)] · [−d · η]

This implies, in particular, that the expression in large brackets in the above equalities
concerning [e] · [(Lst,η)B ] vanishes.

Thus, in summary, we have:

[e] · [(Lst,η)B ] = −1
d
·
∑

ι

[−d · ηι] · φ1

= −1
d
·
∑

ι

φ1(−d · ηι)

=
1
d
[e] · [−d · η]

But note that −d · η = e if and only if m divides d. Moreover, since −d · η is a torsion
point, it follows that [e] · [−d · η] is 0 if −d · η �= e, and − 1

12 if −d · η = e. This completes
the proof. ©

Finally, we note the following consequence of the above discussion: Suppose that
m = 2d. Write L for (Lst,η)B (respectively, (Lev

st,η)B) if d is odd (respectively, even). Note
that the fact that m = 2d implies that L is symmetric. Thus, we can use the action of
the theta group GL to construct algebraic theta functions (cf. Chapter IV, §1; Chapter IV,
the discussion following Corollary 5.3), as follows. If α ∈ E∞,B(T ) is any T -valued point
for a B-scheme T as in Proposition 1.2, then we get an isomorphism (of metrized vector
bundles on T∞)

L|T ∗α KL
∼= (L|α0) ⊗O

K0
L
OKL

(where K0
L

def= KL/2 · KL, and L|α0 is the metrized line bundle on K0
L ×B T obtained by

descending L|T ∗α KL
). Thus, for instance, if d is odd, then we obtain a trivialization of the
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restriction of L to the subscheme T ∗α KL. In particular, restriction to T ∗α KL defines (by
composing with the above isomorphism) a morphism of metrized vector bundles on T∞
with GL-action:

(fB)∗L|T → (L|α0) ⊗O
K0
L
OKL

For instance, if T = B, and α = e, then we get a morphism

(fB)∗L → (L|e0) ⊗O
K0
L
OKL

i.e., this morphism allows us to think of global sections of L over E∞,B as being (essentially)
functions on the B-finite scheme KL.

§2. The Definition of the Evaluation Map

In this §, we set up the morphism which will be the principal topic of the comparison
isomorphism to be proven in Chapter VI. Roughly speaking, this morphism is the morphism
given by evaluating global sections of an ample line bundle on the universal extension of a
(log) elliptic curve at the torsion points of the universal extension.

Let d ≥ 1 be an integer. Suppose that Slog is a fine noetherian scheme, and let

C log → Slog

be a log elliptic curve over Slog such that the “divisor at infinity” D ⊆ S (i.e., the pull-
back of the divisor at infinity of (M1,0)Z via the classifying morphism S → (M1,0)Z) is a
Cartier divisor (i.e., locally defined by a non-zero divisor) on S. Also, let us assume that
étale locally on the completion of S along D, the pull-back of the Tate parameter q to this
completion admits a d-th root.

Next, observe that by pulling back the corresponding objects in the universal case, we
obtain

E → S; E∞,S → S∞

(cf. Chapter IV, §4,5). By considering objects which are (étale locally on S) obtained by
pulling back metrized line bundles on the tautological E∞,M over M def= (M1,0)Z (cf. the
theory of Chapter IV, §4,5), we obtain a notion of “metrized line bundles on E∞,S .” We
leave the routine details of the precise formulation of this notion to the reader. Let
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L

be a metrized line bundle on E∞,S of relative degree d whose curvatures at all the com-
ponents of D are d-invariant (cf. Chapter IV, Proposition 5.1). In fact, ultimately we
will mainly be interested in the cases where S is a covering B (as in the discussion fol-
lowing Chapter IV, Corollary 5.7), or an object derived from such a B (i.e., a comple-
tion/localization of such a B; a point of such a B, etc.), and where L is one of the bundles
“Lst,η” or “Lev

st,η” of §1 (or the pull-back of this bundle to an object derived from such a
B).

Next, we introduce some new notation. Recall the universal extension E† → E of the
log elliptic curve E (cf. Chapter III, Definition 1.2). Recall that the S-group scheme E†
is an extension of E by the affine group scheme WE corresponding to the line bundle ωE .
Then for n ≥ 1 an integer, let us denote by

E
†
[n]

def= lim
−→

⎛
⎜⎜⎝

WE −→ E†⏐⏐�n·

WE

⎞
⎟⎟⎠

the WE-torsor E
†
[n] → E obtained by applying a “push-out” to this extension via the

morphism n· : WE → WE given by multiplication by n.

Note that it follows from the definitions that the morphism d· : E† → E† (“multipli-

cation by d”) factors through E
†
[d]. Thus, we get a homomorphism

E
†
[d] → E†

of group schemes over S which induces an isomorphism (since d· induces multiplication by

d on WE) between WE ⊆ E
†
[d] and WE ⊆ E†. Put another way, this morphism exhibits

the WE-torsor E
†
[d] as the pull-back to E via the multiplication by d map on E of the

WE-torsor E†. Moreover, since E† extends naturally to a WE-torsor E
†
C → C (Chapter

III, Corollary 4.3), and the morphism “multiplication by d” on E extends naturally to
a morphism Cd → C (i.e., Cd is the semi-stable model of E over S with d irreducible
components in the special fiber – cf. the notation of Chapter IV, §4), we thus obtain (by

pulling back E
†
C → C via Cd → C) a natural WE-torsor

E
†
Cd,[d] → Cd

extending the WE-torsor E
†
[d] → E over E ⊆ Cd. Note that the restriction
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E
†
Ed,[d] → Ed

of E
†
Cd,[d] to Ed ⊆ Cd (i.e., the complement of the nodes of Cd – cf. the notation of

Chapter IV, §4) has a natural structure of group scheme over S with respect to which the

homomorphism E
†
[d] → E† considered above extends to a homomorphism E

†
Ed,[d] → E†.

On the other hand, since E∞,S is obtained by removing the nodes of an object C∞,S ,

which, in turn, is obtained by blowing up Cd, we thus see that the WE-torsor E
†
Cd,[d] → Cd

restricts to an object E
†
C∞,S ,[d] → C∞,S , which, in turn, restricts to an object

E
†
∞,[d]

def= E
†
E∞,S ,[d] → E∞,S

(which extends (E†
Ed,[d] → Ed) ×S S∞).

Let us denote the kernel of the homomorphism Ed → E (i.e., the open version of the
morphism Cd → C considered above) by

dE ⊆ Ed

It follows from the assumption concerning the existence of roots of the Tate parameter
that dE forms a finite, flat group scheme over S.

Lemma 2.1. There is a natural subgroup scheme

dE
† ⊆ E

†
Cd,[d]

which maps isomorphically to dE ⊆ Cd.

Proof. Indeed, observe that the homomorphism E
†
Ed,[d] → E† fits into the following

commutative diagram:

0 −→ WE −→ E
†
Ed,[d] −→ Ed −→ 0⏐⏐�id

⏐⏐� ⏐⏐�
0 −→ WE −→ E† −→ E −→ 0

where the vertical arrow on the left is the identity. Thus, we conclude that E
†
Ed,[d] → E†

is finite and flat, and that its kernel maps isomorphically down to the kernel of Ed → E,
which is simply dE (cf. the discussion at the beginning of Chapter IV, §3). ©
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We are now ready to define the evaluation map, which is the main topic of this §, and,
indeed, of this paper. By abuse of notation, let us write fS for all structure morphisms of
objects over S∞ down to S∞. If n ≥ 1 is an integer, let us denote by

(fS)∗(L|
E
†
∞,[d]

)<n

the subsheaf of (fS)∗(L|
E
†
∞,[d]

) consisting of those sections whose torsorial degree < n (cf.

Chapter III, Definition 2.2). Thus, (fS)∗(L|
E
†
∞,[d]

)<n forms a metrized vector bundle on

S∞ of rank d ·n (cf. the theory of Chapter IV, §5). Moreover, this metrized bundle admits
a natural action of the theta group GL associated to L.

On the other hand, for α ∈ E†(S) ⊆ E
†
∞,[d](S∞), let us consider the push-forward to

S∞ of the restriction of the metrized line bundle L on E∞,S to the (result of base-changing

by S∞ → S the) subscheme (E†
Ed,[d] ⊇) T ∗α (dE

†) ∼= T ∗α (dE) ⊆ Ed:

(fS)∗(L|
T ∗α (dE

†
∞)

)

(where dE
†
∞

def= dE
† ×S S∞; “T??” denotes “translation by ??”). One sees easily that

L|
T ∗α (dE

†
∞)

forms a metrized vector bundle on S∞ of rank d2. Moreover, since the action of

GL on L covers the action of KL = dE on T ∗α (dE), we thus see that this metrized vector
bundle admits a natural action of the theta group GL.

Proposition 2.2. Under the above conditions, restriction of sections over E
†
∞,[d] to the

subscheme T ∗α (dE
†
∞) ⊆ E

†
∞,[d] defines a natural morphism

ΞL,d,α : (fS)∗(L|
E
†
∞,[d]

)<d → (fS)∗(L|
T ∗α (dE

†
∞)

)

of metrized vector bundles of rank d2 on S∞ which is compatible with the actions of the
theta group GL on both sides. (When the various subscripts of Ξ are fixed in a discussion,
they will often be omitted, especially in the case where α is taken to be the origin.)

The main purpose of this paper is to investigate the extent to which this
restriction morphism ΞL,d,α is an isomorphism.

Next, suppose that
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H ⊆ GL

is a Lagrangian subgroup scheme (cf. Chapter IV, Definition 1.3 – note that the theory of
Lagrangian subgroups reviewed in Chapter IV, §1, extends immediately to the metrized
case). Let KH ⊆ KL

∼= dE ⊆ Ed be the image of H in KL. (Thus, H ∼= KH .) Let

E∞H ,S
def= E∞,S/(KH)S∞

(where (KH)S∞
def= KH ×S S∞). Note that the immediate extension of Chapter IV,

Theorem 1.4, to the metrized case shows that there exists a metrized line bundle

LH

(of relative degree 1) on E∞H ,S (defined by H ⊆ GL). Write

dEH
def= dE/KH

(so dEH ×S S∞ ⊆ E∞H ,S). Thus, dEH is a finite flat group scheme over S. Next, observe
that since KH ⊆ dE is annihilated by d, it follows that the finite morphism Cd → C
considered above (which compactifies multiplication by d) factors (uniquely) as a composite

Cd → CH → C

of finite morphisms, where CH is S-flat, and, after base-change via S∞ → S and restriction
to US

def= S − D, the morphism Cd → CH may be identified with the morphism E∞,S →
E∞H ,S . Thus, since E

†
∞,[d] → E∞,S is obtained from E

†
Cd,[d] → Cd which, in turn, is

obtained by pulling back E
†
C → C via Cd → C, it follows that we obtain natural WE-

torsors

E
†
CH ,[d] → CH ; E

†
∞H ,[d] → E∞H ,S

whose pull-backs to Cd, E∞,S may be identified with E
†
Cd,[d] → Cd, E

†
∞,[d] → E∞,S . Note,

moreover, that (it is immediate from the definitions that) the lifting dE
† of dE defines a

lifting

dE
†
∞H

⊆ E
†
∞H ,[d]

of dEH ×S S∞ ⊆ E∞H ,S . Finally, let us write αH for the image of α in E
†
∞H ,[d](S∞).
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Thus, by taking the H-invariants of the domain and range of ΞL,d,α in Proposition
2.2 (and applying the immediate extension of Chapter IV, Theorem 1.4, to the metrized
case), we obtain the following:

Proposition 2.3. Under the above conditions, restriction of sections over E
†
∞H ,[d] to the

subscheme T ∗α (dE
†
∞H ) ⊆ E

†
∞H ,[d] defines a natural morphism

ΞH
L,d,α

: (fS)∗(LH |
E
†
∞H ,[d]

)<d → (fS)∗(LH |
T ∗αH

(dE
†
∞H

)
)

of metrized vector bundles of rank d on S∞ which may be identified with the morphism
obtained from the restriction map ΞL,d,α of Proposition 2.2 by taking H-invariants.

Since, in this case, taking H-invariants is a faithful operation (cf. Chapter IV, Theorem
1.4), it follows that, for instance, the bijectivity of ΞL,d,α is equivalent to that of ΞH

L,d,α
.

Often, it will be technically easier to analyze the restriction morphism Ξ after taking
H-invariants.

Finally, to prepare for §5, 6 below, we consider the dependence of Ξ on α. Let w be
a section of WE . Then note that translation by w induces natural identifications

T ∗w (L|
E
†
∞,[d]

) = L|
E
†
∞,[d]

; T ∗w (LH |
E
†
∞H ,[d]

) = LH |
E
†
∞H ,[d]

Thus, translation by w effects automorphisms T ∗w of the metrized vector bundles

(fS)∗(L
E
†
∞,[d]

)<d; (fS)∗(LH |
E
†
∞H ,[d]

)<d

which are unipotent with respect to the filtration (on (fS)∗(−)<d) by torsorial degree. In
other words, these automorphisms T ∗w induce the identity on each of the subquotients
(fS)∗(−)<i/(fS)∗(−)<i−1 (for i ∈ Z). Indeed, this follows immediately from the definition
of a WE-torsor. Thus, since both the domain and range of the morphisms of Proposition
2.2 (respectively, 2.3) are the same (i.e., not just isomorphic) for α and α + w, it makes
sense to compare these two morphisms, and, in particular, to compare their determinants.
Note, moreover, that the morphisms of Propositions 2.2 (respectively, 2.3) for α, α + w
differ precisely by composition with the automorphism T ∗w . Thus, we obtain the following:

Lemma 2.4. For any section w of WE, we have:

det(ΞL,d,α) = det(ΞL,d,α+w); det(ΞH
L,d,α

) = det(ΞH
L,d,α+w

)
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(where “det(−)” is a section of the metrized line bundle det(range) ⊗ det(domain)−1 on
S∞).

§3. Extension of the Étale-Integral Structure

In this §, we show that the étale-integral structures “Ret” discussed in Chapter III,
§6, are defined for arbitrary elliptic curves (i.e., not just for degenerating elliptic curves, as
in the discussion of Chapter III, §6), and, moreover, are that the functions in these étale-
integral structures assume integral values at the torsion points appearing in the definition of
the evaluation map. It will be relative to this étale-integral structure (defined for arbitrary
elliptic curves) that we will prove the comparison isomorphism in Chapter VI.

We work with the notation of Chapter III, §5, 6. Thus, let O be a Zariski localization
of OK , where K is a finite extension of Q. Let

A
def= O[[q]]; S

def= Spec(A)

Then we have a one-dimensional semi-abelian scheme

E → S

over S. Roughly speaking, one may think of E as being “Gm/qZ.” More rigorously, E
may be compactified to a log elliptic curve C log → Slog. Moreover, C

Ŝ
(the result of base

changing C to the q-adic completion Ŝ of S) may be written as

C
Ŝ

= C∞
Ŝ

/Zet

Recall that in Chapter III, §6, we used the natural isomorphism of Chapter III, The-
orem 5.6, Corollary 5.9:

E
†
C |C∞

Ŝ

∼= (WE)
Ŝ
×

Ŝ
C∞

Ŝ

to define a new integral structure

Ret

E
†
C

on R
E
†
C

⊗ Q (cf. Chapter III, Proposition 6.1). If one trivializes ωE by means of the

section d log(U), then we may write
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WE = Spec(OS [T ])

(where T is the indeterminate corresponding to the chosen trivialization of ωE). The new
integral structure was obtained by essentially adjoining the polynomials

T [n] def=
1
n!

T (T − 1)(T − 2) · . . . · (T − (n − 1))

(for n ∈ Z≥0) to the original integral structure.

Now let us write (for d ≥ 1 an integer)

(C̃d)Ŝ

def= C∞
Ŝ

/(d · Zet)

Since (C̃d)Ŝ
→ Ŝ is proper, it algebrizes to some C̃d → S. Let Ẽ → S be the open

subscheme of C̃d obtained by removing from C̃d the irreducible components of the special
fiber (i.e., the fiber over q = 0) that do not contain the image of the identity element
eC∞

Ŝ

∈ C∞
Ŝ

(Ŝ) of C∞
Ŝ

. Let Ẽd → S denote the complement of the nodes of the special

fiber of C̃d. Thus, Ẽd and Ẽ have a natural structure of group scheme over S, and Ẽ is a
semi-abelian scheme over S. Moreover, let us observe that we have a natural finite étale
covering

Ẽd → E

of degree d which compactifies to a finite morphism C̃d → C. Relative to the notation
of §2, if one takes “E” in loc. cit. to be Ẽ (in the notation of the present discussion),
then the resulting “Ed” (respectively, “Cd”) in the notation of loc. cit. corresponds to Ẽd

(respectively, C̃d) in the present discussion. Moreover, I claim that:

The resulting “E†
[d],” “E

†
Cd,[d]” of loc. cit. correspond to E

†
C |C̃d

, E
†
C |Ẽd

in the notation of the present discussion.

Indeed, to prove this, one reasons as follows: The multiplication by d morphism Ẽd → Ẽ
factors as the composite of the finite étale isogeny Ẽd → E under consideration with some
other finite isogeny E → Ẽ (of degree d, whose kernel may be naturally identified with
μd). Moreover, the push-forward morphism associated to the isogeny E → Ẽ induces a
natural isomorphism between the universal extensions of E and Ẽ (cf. the discussion at the
beginning of Chapter IV, §3). Thus, it follows that the pull-back of the universal extension
of Ẽ to Ẽd via the multiplication by d map may be identified with the pull-back of the
universal extension of E to Ẽd via the finite étale isogeny E → Ẽ under consideration.
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On the other hand, the former pull-back is, by the definition of “E†
[d]” given in §2, none

other than the “E†
[d]” associated to Ẽd. (One concludes the corresponding statement for

“E
†
Cd,[d]” by using the fact that the complement of Ẽd in (the normal scheme) C̃d is of

codimension 2.) This completes the proof of the claim. Thus, in the following, we will
write

E
†
C̃d,[d]

for the W
Ẽ

-torsor over C̃d which is the “E
†
Cd,[d]” (in the notation of §2) for the case where

one takes “E” (in §2) to be Ẽ (in the notation of the present discussion).

In particular, we see that by pulling back the new integral structure of Chapter III,
Proposition 6.1, on Ret

E
†
C

via C̃d → C, we obtain a new integral structure

Ret

E
†
C̃d,[d]

⊆ R
E
†
C̃d,[d]

⊗Q

Moreover, this integral structure has the property that:

If f is any section of Ret

E
†
C̃d,[d]

(over, say, Ẽd), then the restriction of f

to any d-torsion point τ ∈ Ẽd(S) defines an integral section of OS.

Indeed, pulling everything back to C∞
Ŝ

, we see this amounts to the observation that the

pull-backs to C∞
Ŝ

of the d-torsion points of Ẽd have coordinates, relative to the decompo-

sition E
†
C |C∞

Ŝ

∼= (WE)
Ŝ
×

Ŝ
C∞

Ŝ
, given by

(β, α · qβ)

where β ∈ Z, and α is a d-th root of unity. (Indeed, this follows from Chapter III, Corollary
5.9, and the fact that the “q-parameter” of Ẽ is given by qd.) Thus, the above property
follows from the fact that any T [n] has integral values at β ∈ Z. (In fact, for β ∈ Z≥0,
the value of T [n] at T = β is 0 (if β < n), 1 (if β = n),

(
β
n

)
(i.e., binomial coefficients, if

β > n).)

Next, let us observe that the semi-abelian scheme Ẽ → S is universal among degener-
ating one-dimensional semi-abelian schemes whose q-parameters admit a d-th root. Thus,
what we have done above already defines a new integral structure on “R

E
†
Cd,[d]

” for any

degenerating one-dimensional semi-abelian scheme E → S (for which the base S is Z-flat)
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whose q-parameter admits a d-th root. In fact, we would like to extend this new integral
structure on R

E
†
Cd,[d]

from a formal neighborhood of the divisor at infinity (where the new

integral structure has already been defined) to the whole of (M1,0)Z. That is to say, in
the following discussion, we propose to do the following:

We would like to “p-adically analytically continue” the new integral
structure on “R

E
†
Cd,[d]

⊗ Q” from a formal neighborhood of the divisor

at infinity to the whole of (M1,0)Z.

More precisely, given any one-dimensional semi-abelian scheme ET → T , where T is Z-flat,
and the q-parameters of ET → T are non-zero divisors that admit d-th roots, we would
like to define a new integral structure on the associated R

E
†
(CT )d,[d]

⊗ Q. Clearly, since

for a fixed n, the new integral structure on Fn(R
E
†
(CT )d,[d]

⊗ Q) differs from the integral

structure defined by Fn(R
E
†
(CT )d,[d]

) at only finitely many primes, it suffices to define these

new integral structure locally, p-adically, at each rational prime p. Thus, we may assume
that T is a Zp-scheme.

Next, let us observe that in the discussion of Chapter III, §6, of the new integral
structure in the case of a degenerating ET → T (i.e., Chapter III, Proposition 6.1), the
key object that we needed in order to define the new integral structure was the canoni-

cal decomposition E
†
C |C∞

Ŝ

∼= (WE)
Ŝ
×

Ŝ
C∞

Ŝ
, i.e., the canonical section κ (cf. Chapter III,

Theorem 2.1). It is precisely because this canonical section is only defined in a formal neigh-
borhood of the divisor at infinity that the discussion of Chapter III, §6 (i.e., Chapter III,
Proposition 6.1) could only be carried out over such a formal neighborhood. In fact, how-
ever, careful inspection reveals that really, for a fixed n, in order to define Fn(Ret

E
†
(CT )d,[d]

)

at a fixed prime p, it suffices to have κ only modulo pN , for some sufficiently large N .

Moreover, in the notation of the above discussion in the degenerating case, if we let

G̃ ⊆ C∞
Ŝ

/(pN · d · Zet)

be the group scheme over S obtained by removing the nodes from C∞
Ŝ

/(pN ·d·Zet), then we

get a finite étale covering G̃ → Ẽ (of degree pN ) with the property that κ is already defined
modulo pN after pull-back via G̃ → Ẽ (or over the compactification C∞

Ŝ
/(pN ·d·Zet) → C̃d).

Indeed, this follows from the fact that 1et ∈ Zet acts on κ by κ �→ κ + 1 (cf. Chapter III,
Theorem 5.6), so elements of pN ·d ·Zet preserve κ modulo pN . Note, moreover, that since
the isogeny G̃ → Ẽ is of degree pN , there exists an isogeny of group schemes H̃ → G̃ which
is finite of degree pN such that the composite
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H̃ → Ẽ

is isomorphic to the “multiplication by pN” map on Ẽ over US = Spec(A[q−1]) (⊆ S).
Thus, in summary,

The canonical section κ is defined modulo pN after pull-back from Ẽ to
H̃.

With these preparatory remarks behind us, we are now ready to begin the “analytic con-
tinuation” argument:

Analytic Continuation Argument:

Let ET → T be a family of elliptic curves, where T is a finite, flat (hence, in particular,
affine) scheme over (M1,0)Zp

(i.e., the complement of the divisor at infinity of (M1,0)Zp
).

To simplify the discussion, we shall also assume that T is normal. Write

HT → ET

for the isogeny given by multiplication by pN . (Thus, HT is abstractly isomorphic as a
T -scheme to ET .)

Consider the torsor E
†
T,[d] → ET (i.e., the “E†

[d]” associated to ET ). This torsor defines
a class

η ∈ H1(ET , ωET
|ET

) ∼= OT

(where the “∼=” follows from relative Serre duality for the morphism ET → T ). If we pull
this class back to HT , then we obtain a class

η
H̃

∈ E def= H1(HT , ωET
|HT

)

where E is a line bundle on T .

I claim that η
H̃

is ≡ 0 modulo pN . There are many ways to verify this claim. One
way is the following: Since E is a line bundle on T , and T is normal, it suffices to verify
that η

H̃
vanishes modulo pN after restricting η

H̃
to the p-adic completion ÔT,p of the

localization of T at any generic point pT of T ⊗ Fp. On the other hand, the discrete
valuation ring ÔT,pT

is clearly dominated by a discrete valuation ring which arises as the
p-adic completion ÔW,pW

of some W at a generic point pW of W ⊗ Fp, where W is the
base of some degenerating elliptic curve whose classifying morphism to (M1,0)Z defines a
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finite morphism W → Spec(Zp[[q]]). On the other hand, for bases such as ÔW,pW
, the fact

that η
H̃

vanishes modulo pN follows from the above discussion of the degenerating case
(i.e., where we saw that the canonical section κ is defined modulo pN after pull-back via
“H̃ → Ẽ”). This concludes the proof of the claim.

Thus, the ωE-torsor E
†
T,[d] → ET splits modulo pN after pull-back via HT → ET . We

would like to show that this torsor not only splits modulo pN , but that it admits a splitting
which extends the canonical splitting κ (modulo pN ) in the degenerating case. To do this,
we must characterize the canonical splitting κ in terms that make sense even for non-

degenerating elliptic curves. We do this as follows: Note that since E
†
T,[d] has a structure

of abelian group scheme over T , it admits an action by Σ def= {±1}. Of course, HT and ET

are also commutative group schemes over T , hence admit natural actions by Σ = {±1}.
Then let us observe that since the canonical splitting κ is a group homomorphism (cf.
Chapter III, Theorem 2.1), it commutes with the respective actions of Σ = {±1}. Let us
regard the line bundle ωET

on T as an OT -module with Σ action, where Σ acts via the
tautological character Σ → {±1} ⊆ O×T . Then it follows by general nonsense that the

obstruction to defining a Σ-equivariant splitting of E
†
T,[d] over HT modulo pN is a class

ηΣ ∈ H1(Σ, ωET
⊗ (Z/pN )) = {ωET

⊗ (Z/pN )} ⊗ (Z/2)

Moreover, if this class vanishes, then such a splitting will be unique modulo

H0(Σ, ωET
⊗ (Z/pN )) = ker(2 : ωET

⊗ (Z/pN ))

(i.e., modulo the kernel of multiplication by 2 on ωET
⊗ (Z/pN )).

Thus, we would like to see that ηΣ vanishes. Of course, this is only a problem when
p = 2. In this case, since ωET

is a line bundle on T , one proves that ηΣ vanishes in precisely
the same way as we proved above that η

H̃
vanishes modulo pN – i.e., by reducing to the

degenerating case, where we know the result to be true. This completes the proof that
ηΣ is always zero. As for uniqueness, in general, we only get uniqueness modulo pN−1 (of
course, if p is odd, we get uniqueness modulo pN ). However, by taking N sufficiently large
(e.g., one larger than the original N necessary to define the integral structure), this is not
a problem. This uniqueness thus shows, by the same argument as that used above to prove
that η

H̃
≡ 0 modulo pN – i.e., by comparing with the degenerating case – that:

There exists a splitting of the torsor E
†
T,[d] over HT modulo pN which

extends the canonical splitting κ considered in the degenerating case
modulo pN−1.

Thus, by taking N sufficiently large, we see that all the functions “T [i]” (for i < our fixed
n) may be defined modulo a sufficiently large power of p so that we may form a new integral
structure
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Fn(Ret

E
†
T,[d]

) ⊆ R
E
†
T,[d]

⊗Q

which extends the integral structure of Chapter III, Proposition 6.1 in the degenerating
case – at least after pulling back from ET to HT . But then, by using the “ÔT,pT

’s,”
reduction to the degenerating case, and finite flat descent (of coherent sheaves) for the
morphism HT → ET , it is easy to see that these integral structures descend back down to
ET , as desired. This completes the “p-adic analytic continuation argument.”

In other words, we have proven the following:

Theorem 3.1. Let d ≥ 1 be an integer. Let

C log → Slog

be any log elliptic curve as at the beginning of §2 – i.e., the associated q-parameter ∈ O
Ŝ

(where Ŝ is the completion of S along the divisor at infinity D ⊆ S defined by C log → Slog)
is a non-zero divisor which, étale locally, admits a d-th root. Suppose further that S is Z-

flat. Then the resulting R
E
†
Cd,[d]

(cf. §2, for the definition of E
†
Cd,[d]) and its filtration

admit natural integral structures

. . . ⊆ Fn(Ret

E
†
Cd,[d]

) ⊆ . . . ⊆ Ret

E
†
Cd,[d]

⊆ R
E
†
Cd,[d]

⊗ Q

where Fn(Ret

E
†
Cd,[d]

) is a rank n vector bundle on Cd such that

(Fn+1/F n)(Ret

E
†
Cd,[d]

) =
1
n!

· OCd
⊗OS

τ⊗n
E

These integral structures are uniquely characterized by the properties that they are functo-
rial in C log → Slog, and they extend the integral structures defined in the degenerating case
in Chapter III, Proposition 6.1. Finally, the functions of Ret

E
†
Cd,[d]

assume integral values

at the d-torsion points of E
†
Cd,[d](S).

Proof. It remains only to remark that the final assertion concerning the integrality of
the values at d-torsion points may be verified for normal T as in the analytic continuation
argument above by checking integrality at the various ÔT,pT

(where pT is a generic point
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of T ⊗ Fp). Moreover the integrality at ÔT,pT
may be verified by reduction to the degen-

erating case, where it has already been verified (cf. the discussion following Chapter III,
Proposition 6.1). ©

Definition 3.2. (Just as in Chapter III, Definition 6.2) the integral structures denoted
by a superscript “et” will be referred to as étale-integral, or et-integral, structures. That
is to say, “et” stands for “étale,” and is the same as the “et” in Zet. In particular, the
“étale-integral structure” may be thought of as the integral structure arising from thinking
of algebraic functions on the universal extension as set-theoretic functions on Zet, i.e., on
the fibers of the infinite étale covering C∞

Ŝ
→ C∞

Ŝ
/Zet = C

Ŝ
.

The original integral structure on the various “R’s” (i.e., the integral structures with-
out a label) will be referred to as the de Rham-integral, or DR-integral, structures. This is
because they arise from the original natural integral structures on the universal extension
E† as a sort of de Rham cohomology – i.e., “H1

DR(E,O×E )” – associated to E.

Remark. In fact, even though in Theorem 3.1, we assumed that S was Z-flat, by working in
the universal case and then pulling back, one sees that the various sheaves we constructed
with a superscript “et” are defined for any C log → Slog as in Theorem 3.1 even without
the assumption of Z-flatness.

§4. Linear Relations Among Higher Schottky-Weierstrass Zeta Functions

In this §, we consider the extent to which the twisted Schottky-Weierstrass zeta func-
tions of Chapter IV, §3, satisfy linear relations modulo various powers of q over the base
ring A (notation as in Chapter IV, §3). Thus, throughout this §, we will use the notation
and conventions of Chapter IV, §2,3. The calculations of linear relations that we carry out
in this § will turn out to yield the key technical machinery behind the main result of this
paper.

We begin by fixing our base ring O as in Chapter IV, §2,3). Thus, O is a Zariski
localization of the ring of integers of a finite extension of Q such that Pic(O) = {1}. We
also fix a positive even integer n = 2m. Then over S = Spec(A) (where A = O[[q]]), we
constructed in Chapter IV, §2, an isogeny

E → Ẽ

whose kernel is equal to μn. Over Ẽ, we considered various line bundles such as:

L̃
Ẽ

def= O
Ẽ

(ẽ); M̃
Ẽ
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Here, M̃
Ẽ

was defined as the restriction to Ẽ ⊆ C̃ of a line bundle M̃ on C̃ obtained by
descending the line bundle L̃⊗n

C∞
Ŝ

on C∞
Ŝ

via the “standard action” of Zet × μn on L̃⊗n
C∞

Ŝ

.

Recall that the line bundle L̃⊗n
C∞

Ŝ

is the line bundle whose global sections over C∞
Ŝ

can be

written as topological A-linear combinations of certain special monomials

qm·k2+ik · U2mk+i · θm

(where k, i ∈ Z, |i| ≤ m) discussed in Chapter IV, Proposition 2.2. Moreover, for any
character χ ∈ Hom(Πn, (μn)S) (where Πn = (Zet/n) × μn), we defined a line bundle

M̃χ

Ẽ

and we saw in Chapter IV, Theorem 2.1 that for a certain particular character, which we
denote by χθ ∈ Hom(Πn, (μn)S), we have an isomorphism

L̃
Ẽ
∼= Mχθ

Ẽ

of degree 1 line bundles on Ẽ.

In the following discussion, we would like to fix a character

χL ∈ Hom(Πn, (μn)S)

Let us write χM
def= χL · χθ and denote the restrictions of χM and χL to μn ⊆ (Zet/n) ×

μn = Πn by χM,μ : μn → μn and χL,μ : μn → μn, respectively. Thus, we have

L̃χL
Ẽ

∼= M̃χM
Ẽ

Recall that there is a standard action of μn on the special monomials

qm·k2+ik · U2mk+i · θm

(i.e., the action used to define M̃). Note that for this action, μn acts trivially on θm. Let
us refer to the special monomials on which μn acts via (χM,μ)−1 as χL-special monomials.
For j a positive integer, let us write

cj(χL) ∈ Q
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for the maximal nonzero rational number c such that modulo qn·c, the number of nonzero
χL-special monomials is < j. Let us denote this set of < j nonzero (modulo qn·cj(χL))
χL-special monomials by

Cj(χL)

We remark that, here (and in the following discussion):

By “modulo” we mean, strictly speaking, when restricted to sections of
L⊗n

C∞
Ŝ

|E
Ŝ

over E
Ŝ

= (Gm)
Ŝ
.

When (as in the following discussion), the character χL is fixed, we shall often just write
cj , Cj for cj(χL) and Cj(χL), respectively.

Schola 4.1. Computation of Special Monomials Modulo Powers of q

Let us compute Cj and cj . There are three cases to consider:

Case I: χL,μ = 1. In this case, the χL-special monomials are those for which i = ±m.
Thus, the monomials for which the exponent m · k2 + ik of q is 0 are precisely:

M
def= Um · θm, M ′ def= U−m · θm = (−1)et(M)

The other χL-special monomials

ket(M) = qm·k2+mk · U2mk+m · θm, (−k)et(M ′) = qm·k2+mk · U−2mk−m · θm

are given by applying (±k)et (for k ≥ 0) to these original two. In particular, there are
precisely 2 + 2k monomials obtained by applying k′et (for |k′| ≤ k) to the original two
monomials. Thus, for k ≥ 0, we have

c2k+1 = c2k+2 =
1
n

(m · k2 + mk) =
1
2
(k2 + k)

while the set C2k+1 = C2k+2 is given by

{k′et(M)}0≤k′<k

⋃
{k′et(M ′)}−k<k′≤0

Case II: χL,μ = χθ|μn
. In this case, the χL-special monomials are those for which i = 0.

Thus, the only monomial for which the exponent m · k2 + ik of q is 0 is the monomial:
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M
def= θm

The other χL-special monomials

ket(M) = qm·k2 · U2mk · θm, (−k)et(M) = qm·k2 · U−2mk · θm

are given by applying (±k)et (for k ≥ 0) to this original monomial. In particular, there are
precisely 1+2k monomials obtained by applying k′et (for |k′| ≤ k) to the original monomial.
Thus, we have

c1 = 0

and, for k ≥ 1,

c2k = c2k+1 =
1
n
· m · k2 =

1
2
k2

while C1 = ∅; the set C2k = C2k+1 is given by

{k′et(M)}0≤|k′|<k

Case III: χL,μ
2 �= 1. In this case, the χL-special monomials are those for which i = iχ,

for some fixed integer iχ such that 0 < |iχ| < m. Thus, the only monomial for which the
exponent m · k2 + ik of q is 0 is the monomial:

M
def= U iχ · θm

The other χL-special monomials

ket(M) = qm·k2+iχ·k · U2mk+iχ · θm, (−k)et(M) = qm·k2−iχ·k · U−2mk+iχ · θm

are given by applying (±k)et (for k ≥ 0) to this original monomial. Note that (for k ≥ 1)

m · k2 + |iχ| · k > m · k2 − |iχ| · k > m · (k − 1)2 + |iχ| · (k − 1)

(Indeed, the second inequality follows from the fact that 2mk = m + m · (2k − 1) >
m + |iχ| · (2k − 1).) In other words, the exponent of q induces a total ordering on the set
of χL-special monomials. The first 2k monomials are given by applying k′et (for integers
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k′ such that either |k′| < k or |k′| = k, k′ · iχ < 0) to the original monomial, while the
first 1 + 2k monomials are given by applying k′et (for integers k′ such that |k′| ≤ k) to the
original monomial. Thus, we have

c1 = 0

and, for k ≥ 1,

c2k =
1
n
· (m · k2 − |iχ| · k); c2k+1 =

1
n
· (m · k2 + |iχ| · k)

Moreover, C1 = ∅; the set C2k is given by

{k′et(M)}0≤|k′|<k

while the set C2k+1 is given by

{k′et(M)}0≤|k′|<k

⋃
{k′et(M)}|k′|=k, k′·iχ<0

This completes the computation of Cj and cj .

Lemma 4.2. For any choice of character χL ∈ Hom(Πn, (μn)S), we have:

j∑
a=1

ca =
1
24

j(j2 − 1)

for any odd integer j ≥ 1.

Proof. First, we observe that for any even integer a = 2k ≥ 2, we have ca + ca+1 = k2.
Indeed, in the cases where χL,μ �= 1 (i.e., Cases II and III), it is immediate from the
formulas for ca and ca+1 that we have ca + ca+1 = k2. On the other hand, in Case I,
we have ca + ca+1 = 1

2{k2 + k + (k − 1)2 + (k − 1)} = k2, as asserted. Thus, if we let

j′
def= 1

2 (j − 1), then we have

j∑
a=1

ca =
j′∑

b=1

b2 =
1
6
j′(j′ + 1)(2j′ + 1) =

1
24

(j − 1)(j + 1)j =
1
24

j(j2 − 1)

as desired. ©
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Note that in the above analysis, Cj was always obtained by applying various ket’s to
certain fixed monomials M , M ′ which were the unique χL-special monomials that were
nonzero modulo q. Let us write (for j ≥ 3 in Case I; for j ≥ 2 in Cases II, III)

Max(Cj) (respectively, Min(Cj))

for the maximum (respectively, minimum) integer k such that the symbol ket(M) or ket(M ′)
appears in the lists of elements of Cj that were given in Schola 4.1. (Here, by “symbol,”
we simply mean that in Case I, we wish to distinguish the symbol M ′ from (−1)et(M).)
Note that

Max(Cj) ≥ 0 ≥ Min(Cj)

Also, let us write

Span(Cj)
def= Max(Cj) − Min(Cj)

Thus, in Case I, we have (for k ≥ 1)

Max(C2k+1 = C2k+2) = k − 1; Min(C2k+1 = C2k+2) = −(k − 1)

Span(C2k+1 = C2k+2) = 2k − 2

In Case II, we have (for k ≥ 1)

Max(C2k = C2k+1) = k − 1; Min(C2k = C2k+1) = −(k − 1)

Span(C2k = C2k+1) = 2k − 2

In Case III, we have (for k ≥ 1)

Max(C2k) = k − 1; Min(C2k) = −(k − 1); Span(C2k) = 2k − 2

and

Max(C2k+1) = k − 1 + εMax; Min(C2k+1) = −(k − 1) − εMin

Span(C2k+1) = 2k − 1
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where εMax + εMin = 1, and εMax is 1 (respectively, 0) if iχ < 0 (respectively, iχ > 0). In
particular, we observe that if Min(Cj) ≤ a ≤ Max(Cj), then aet(M) ∈ Cj (in all Cases);
aet(M ′) ∈ Cj (in Case I).

Now let a be an integer such that Min(Cj) ≤ a ≤ Max(Cj), for some integer j such
that Max(Cj), Min(Cj) are defined. Let ket(M) be an arbitrary χL-special monomial (so
k may be any integer). Then observe that:

If (−a)et(ket(M)) = (−a + k)et(M) is nonzero modulo q, then it follows
that ket(M) ∈ Cj.

Indeed, if (−a)et(ket(M)) is nonzero modulo q, then (by the discussion in Schola 4.1) we
deduce that (−a)et(ket(M)) is M or M ′ (in Case I); (−a)et(ket(M)) = M (in Cases II,
III). Thus, ket(M) is aet(M) or aet(M ′) (in Case I); ket(M) = aet(M) (in Cases II, III).
In particular, ket(M) ∈ Cj , as desired. This observation implies the following:

Lemma 4.3. Let j be an integer which is ≥ 3 (in Case I); ≥ 2 (in Cases II, III). If
ψ is any topological A-linear combination of χL-special monomials which is ≡ 0 modulo
qn·cj , then (−a)et(ψ) is ≡ 0 modulo q, for any a such that Min(Cj) ≤ a ≤ Max(Cj).

Proof. Indeed, such a ψ is a topological A-linear combination of ket(M)’s, where k
ranges over all elements of Z. If ket(M) �∈ Cj , then it follows from the above observation
that (−a)et(ket(M)) ≡ 0 modulo q. Thus, the only terms in the topological A-linear
combination of ket(M)’s that might yield a nonzero contribution to (−a)et(ψ) modulo q
are those for which ket(M) ∈ Cj . But since ψ ≡ 0 modulo qn·cj , it follows (from the
definition of the set Cj !) that the coefficients of those terms must be ≡ 0 modulo q. Thus,
(−a)et(ψ) ≡ 0 modulo q, as desired. (Note that in this argument, we make essential use of
the fact that the elements of the set {ket(M)}k∈Z are (topologically) linearly independent
over A – a fact which follows immediately from the observation that the exponents of U
which appear in distinct elements of this set are distinct.) ©

Now recall the operator δχ (i.e., given by δχ(?) def= {χ(1et) · 1et(?)}− ?, where here we
take χ

def= χM) of Chapter IV, §3. Note that if, for instance, ψ is a topological A-linear
combination of χL-special monomials which is zero modulo qn·cj , then one can compute
δχ(ψ) modulo q as soon as one knows ψ and 1et(ψ) modulo q. By induction, one sees easily
that one can compute the b-th iterate of this operator (δχ)b(ψ) (for some positive integer
b) modulo q as soon as one knows ψ, 1et(ψ), . . . , bet(ψ) modulo q. Thus, Lemma 4.3 has
the following consequence/generalization:

Corollary 4.4. Let j be an integer which is ≥ 3 (in Case I); ≥ 2 (in Cases II, III). If
ψ is any topological A-linear combination of χL-special monomials which is ≡ 0 modulo
qn·cj , then
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(−a)et((δχ)b(ψ)) ≡ 0 (modulo q)

for any integers a, b such that 0 ≤ b ≤ Span(Cj), b + Min(Cj) ≤ a ≤ Max(Cj).

Next, let us recall the twisted Schottky-Weierstrass zeta functions ζχ
i (of Chapter IV,

Theorem 3.1) associated to the character χ
def= χM. In the following discussion, we shall

think of these functions as sections of L⊗n
C∞

Ŝ

(i.e., without the superscripted χ – contrary to

the notation of Chapter IV, Theorem 3.1) on which Zet ×μn acts via χ−1. Note that (by
Chapter IV, Theorem 3.1) the ζχ

i are all topological A-linear combinations of χL-special
monomials, i.e., satisfy the assumptions on ψ in Corollary 4.4. Now let us suppose that
for some integer r ≥ 0, we are given an A-linear combination

r∑
i=0

γi · ζχ
i

(where the γi ∈ A) which is ≡ 0 modulo qn·cj , for j as in Corollary 4.4. Let εCase be 1 if
we are in Case I, and 0 otherwise. Suppose, moreover, that for some s ≤ Span(Cj)+ εCase,
we have:

γs �≡ 0; γi ≡ 0 modulo q

for all i > s. Then, by applying Corollary 4.4 to the above sum, we obtain that for some
integer a:

0 ≡ aet

{ r∑
i=0

γi · (δχ)s−εCase(ζχ
i )
}
≡ aet

{ s∑
i=s−εCase

γi · (δχ)s−εCase(ζχ
i )
}

modulo q

i.e., the terms such that i > s vanish modulo q because of the assumptions on the γi;
the terms such that i < s − εCase vanish because (δχ)s−εCase(ζχ

i ) = 0 (by the formula for
δχ(ζχ

i ) given in Chapter IV, Theorem 3.1) for such i. If we are in Cases II or III, then
since (δχ)s(ζχ

s ) = ±ζχ
0 , and δχ(ζχ

0 ) = χM(1) · 1et(ζ
χ
0 ) − ζχ

0 = 0, we obtain that

0 ≡ γs · aet(ζ
χ
0 ) = γs · χM(a)−1 · ζχ

0 modulo q

i.e., γs ≡ 0 modulo q, which is a contradiction. In Case I, we have (δχ)s−1(ζχ
s ) = ±ζχ

1 +γ ·ζχ
0

(for some γ ∈ A), (δχ)s(ζχ
s ) = ±ζχ

0 , so we obtain that

0 ≡ γs−1 · aet(±ζχ
1 + γ · ζχ

0 ) ± γs · aet(ζ
χ
0 ) modulo q
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(where the various “±’s” which appear are not necessarily “coordinated”). Moreover,
aet(ζ

χ
1 ) is clearly equal to a root of unity times ζχ

1 plus an A-multiple of ζχ
0 , while aet(ζ

χ
0 )

is equal to a root of unity times ζχ
0 . On the other hand, by Lemma 4.5 below, we know

that in Case I, ζχ
0 and ζχ

1 are O-linearly independent modulo q. Thus, we obtain that γs−1

and γs are ≡ 0 modulo q, which is again a contradiction.

Lemma 4.5. In Case I, the reductions modulo q of ζχ
0 and ζχ

1 are linearly independent
over every residue field of O.

Proof. Write ζχ
0 = σ0 · θm, ζχ

1 = σ1 · θm. Then from 1et(θm) = qm · Un · θm, 1et(ζ
χ
0 ) =

χM(1)−1 · ζχ
0 , we obtain that if we set

ζχ def=
1
2

+
U

n · σ0
· ∂σ0

∂U

then 1et(ζχ) = ζχ − 1 (cf. the case of “classical Schottky-Weierstrass zeta function ζ”
discussed in Chapter III, §5 – especially Theorem 5.6). Note, here, that the operator
1
2 + U

n · ∂
∂U is integral (even at primes of O which divide 2 or n) on χL-special monomials

in Case I: Indeed, in the notation of Schola 4.1, above, this operator acts on ket(M) by
multiplication by 1

2 + 1
n · (2mk + m) = k + 1, and on (−k)et(M ′) by multiplication by

1
2 + 1

n (−2mk − m) = −k.

In other words, in the terminology of Chapter IV, §3, “(σ0 ·θm) ·T +(σ0 ·ζχ ·θm)” is an
“extension polynomial on which Zet×μn acts via χM.” Thus, we may take ζχ

1 = σ0 ·ζχ ·θm.

On the other hand, ζχ
0 modulo q may be computed as in the proof of Chapter IV,

Theorem 2.1, to be equal to (an A×-multiple of)

(Um + γ · U−m) · θm

(where γ is a root of unity). If we apply the operator 1
2 + U

n · ∂
∂U to the coefficient of θm

in this expression, we obtain

Um · θm

Thus, since γ is a root of unity, hence ∈ O×, we obtain that these two expressions are
linearly independent over every residue field of O, as desired. ©

Thus, we see that we have essentially proven the following result:

Theorem 4.6. Let χL ∈ Hom(Πn, (μn)S) be a character. Let j ≥ 2 be an integer. Then
the twisted Schottky-Weierstrass ζ-functions ζχ

0 , . . . , ζχ
j−1 (cf. Chapter IV, Theorem 3.1)

associated to χ
def= χM satisfy the following:
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Case I: χL,μ = 1. If j = 2, then the reductions modulo q of ζχ
0 and ζχ

1

are linearly independent over A/(q) = O. If j ≥ 3, let j0
def= 2k + 1 ≥ 3

be any odd integer such that j ≥ j0 ≥ 3. Let εCase
def= 1.

Case II: χL,μ = χθ|μn
. Let j0

def= 2k ≥ 2 be any even integer such that

j ≥ j0 ≥ 2. Let εCase
def= 0.

Case III: χL,μ
2 �= 1. Let j0 ≥ 2 be any integer such that j ≥ j0 ≥ 2.

Let εCase
def= 0.

In all the Cases, let B
def= A/(qn·cj0 ). Then there exists a B-submodule R ⊆ Bj – i.e., a

submodule of relations – such that:

(i)
∑j−1

i=0 γi · ζχ
i ≡ 0 modulo qn·cj0 for all (γ0, . . . , γj−1) ∈ R;

(ii) the projection R → Bj−j0+1 onto the last j − j0 + 1 factors is an
isomorphism.

Finally, we have:

(∗) Any (γ0, . . . , γj−1) ∈ Bj such that (γ0, . . . , γj−1) �∈ q · Bj, and∑j−1
i=0 γi · ζχ

i ≡ 0 modulo qn·cj0 has at least one i ≥ Span(Cj0) +
1 + εCase = j0 − 1 = |Cj0 | (i.e., the cardinality of Cj0) such that
γi �≡ 0 modulo q.

In fact, this statement (∗) holds “modulo p” for any maximal prime p of O, i.e.:

(∗p) Any (γ0, . . . , γj−1) ∈ Bj such that (γ0, . . . , γj−1) �∈ (q, p) · Bj, and∑j−1
i=0 γi · ζχ

i ≡ 0 modulo (qn·cj0 , p) has at least one i ≥ Span(Cj0) +
1 + εCase = j0 − 1 = |Cj0 | (i.e., the cardinality of Cj0) such that γi �≡
0 modulo (q, p).

Proof. Indeed, the statement (∗) was precisely what we proved above; its “modulo p”
version (∗p) follows by precisely the same argument. When j = 2 in Case I, Theorem 4.6
follows from Lemma 4.5. Thus, let us assume that we are in Case I and j ≥ 3, or that we
are in Cases II or III and j ≥ 2. To see that there exists a B-submodule R in each Case
satisfying properties (i) and (ii), let us first observe that the map
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(γ0, . . . , γj−1) �→
j−1∑
i=0

γi · ζχ
i modulo qn·cj0

defines a B-linear morphism

Ξ : Bj →
{

B−linear combinations of the monomials ∈ Cj0 modulo qn·cj0

}

Note that because of the way in which j0 was chosen in each of the three cases (and
because of the way in which we defined Cj0) it follows that Cj0 has cardinality j0 − 1.
We would like to show that the kernel of Ξ is isomorphic (as a B-module) to Bj−j0+1

(via the projection of (ii)). Suppose that we can show this after base-changing from O to
an arbitrary residue field of O. Then it will follow from elementary commutative algebra
(by thinking about finitely generated modules over the principal ideal domain O) that the
kernel of Ξ is abstractly isomorphic to Bj−j0+1 as an O-module; moreover, the projection
of (ii) will then be a morphism between free O-modules of the same rank which is bijective
modulo all of the maximal primes of O. Thus, it will follow that the projection of (ii)
is bijective over O, hence that Ker(Ξ) is isomorphic as a B-module to Bj−j0+1 via the
projection of (ii), as desired.

Thus, it suffices to show (i) and (ii) after base-changing to an arbitrary residue field
of O. Let us denote the objects obtained by executing this base-change by means of a
subscript “res.” Then the range of Ξres is a Bres-module which is a quotient of Bj0−1

res .
In particular, it follows from elementary commutative algebra (since Bres is a quotient
of the principal ideal domain Ares) that there exists a Bres-submodule Rres ⊆ Bj

res that
satisfies (i) and which is ∼= Bj−j0+1

res . The fact that such an Rres also satisfies (ii) is a formal
consequence of (∗p). This completes the proof of the “res” case, and hence of the entire
Theorem. ©

Remark. From a certain point of view, Theorem 4.6 is the key technical result behind the
main theorems of this paper.

Corollary 4.7. Let χL ∈ Hom(Πn, (μn)S) be a character. Let j ≥ 2 be an integer. Then
the twisted Schottky-Weierstrass ζ-functions ζχ

0 , . . . , ζχ
j−1 (cf. Chapter IV, Theorem 3.1)

satisfy the following property: Let j′ be defined as follows:

Case I: Let j′ be the smallest odd integer ≥ j + 1.

Case II: Let j′ be the smallest even integer ≥ j + 1.

Case III: Let j′
def= j + 1.
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Let p be a maximal prime of O. Then if γ0, . . . , γj−1 ∈ A are such that

j−1∑
i=0

γi · ζχ
i ≡ 0 modulo qn·cj′ (respectively, modulo (qn·cj′ , p))

then all of the γi’s are ≡ 0 modulo q (respectively, modulo (q, p)). Finally, j′ satisfies the
property: |Cj′ | = j′ − 1 ≤ j + 1; if j is odd, then |Cj′ | is = j + 1 (in Case I), = j (in
Cases II, III); if j is even, then |Cj′ | is = j + 1 (in Case II), = j (in Cases I, III).

Proof. The final statement follows immediately from the definitions. Thus, let us prove
the statement concerning linear independence. To simplify the notation, we prove the
result in the “non-resp’d” case. (The proof in the “resp’d” case is entirely similar.) First,
j′ is defined as “the smallest j0 (as in Theorem 4.6) which is ≥ j+1.” Then if we let γi

def= 0
for i ≥ j, suppose that there exists some γi �≡ 0 modulo q, and apply the statement (∗) of
Theorem 4.6, we obtain that there exists some i ≥ j′ − 1 ≥ j for which γi �≡ 0 modulo q.
But in light of the definition of the γi, this is absurd. This contradiction completes the
proof. ©

Finally, we close this § by observing that, although in the above discussion, we took
an abstract point of view with respect to showing the existence of linear combinations of
the ζχ

i satisfying certain congruence property modulo powers of q, in fact, it is possible to
give an explicit description of the linear combinations of ζχ

i ’s that arise. Indeed, one has
the following result:

Theorem 4.8. (Congruence Canonical Schottky-Weierstrass Zeta Functions)
Let σχ ∈ Γ(C∞

Ŝ
, (L⊗n

C∞
Ŝ

)χ) be as in Chapter IV, §3. Let iχ ∈ {−m,−m + 1, . . . ,m − 1} be

as in Chapter IV, Theorem 3.3. (Note that this notation is consistent with the notation of
the present § for Case III.) Then, up to an A×-multiple, σχ is equal to the series

∑
k∈Z

qm·k2+iχ·k · U2mk+iχ · θm · χ(ket) =
∑
k∈Z

ket(U iχ · θm) · χ(ket)

Now if r is a nonnegative integer, let Lr(T ) def= T + λr − iχ

2m , where λr ∈ Z is defined as
follows:

λr
def=
[r
2

+
iχ
2m

]

i.e., the greatest integer ≤ the number in brackets. Then if we set ζCG
0 to be equal to the

above series, and
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ζCG
r

def=
(

Lr(δ∗)
r

)
(ζCG

0 ) =
∑
k∈Z

(
k + λr

r

)
· qm·k2+iχ·k · U2mk+iχ · θm · χ(ket)

ζCG
r [T ] def=

(
Lr(δ∗ + T )

r

)
(ζCG

0 ) =
r∑

i=0

ζCG
i · T [r−i]

(where δ∗, T are as in Chapter IV, Theorem 3.3), then for any positive integer j, we have

ζCG
j−1 ≡ 0 modulo qn·cj0

(where j0 is as in Theorem 4.6). Finally, the ζCG
r are integral over Z, and form a collection

of twisted higher Schottky-Weierstrass zeta functions as in Chapter IV, Theorem 3.1.

Proof. Note that the series given for (an A×-multiple of) σχ is Zet-invariant. On the other
hand, since the set of Zet-invariant elements of Γ(C∞

Ŝ
, (L⊗n

C∞
Ŝ

)χ) forms a free A-module of

rank 1, it follows immediately that σχ is an A×-multiple of this series. The explicit series
formula for ζCG

r then follows immediately. In particular, since Lr(k + iχ

2m) will always be
∈ Z, it follows immediately that ζCG

r is integral over Z. Since δ∗ + T is Zet-invariant, it
follows immediately that the ζCG

r form a collection of twisted higher Schottky-Weierstrass
zeta functions as in Chapter IV, Theorem 3.1. In fact, one can even write the ζCG

r as
explicit linear combinations of the ζBI,χ

i ’s (of Chapter IV, Theorem 3.3) by using Chapter
III, Lemma 7.5.

Thus, it remains only to show that ζCG
j−1 has the desired congruence property. The

point here is to observe that if we define a filtration F r(Z) (for r ≥ 0 an integer) on Z by:

F r(Z) def= {0 − λr, 1 − λr, . . . , r − 1 − λr}

then F r+1(Z) is obtained from F r(Z) by appending one more integer “k[r]” directly to the
left/right of F r(Z) (where “left/right” depends only on the parity of r), and, moreover, the
exponent of q in the χL-special monomial corresponding to this “k[r]” is ≥ the exponents
of q in the χL-special monomial corresponding to the integers “k” in F r(Z). In particular,
it follows that for each of the χL-special monomials

qm·k2+iχ·k · U2mk+iχ · θm

belonging to Cj0 , Lj−1(k + iχ

2m) is a nonnegative integer ≤ j − 2. Thus,
(
Lj−1(k+

iχ
2m )

j−1

)
= 0.

That is to say, the coefficients (in the series defining ζCG
j−1) of all the χL-special monomials

in Cj0 are zero. This proves the desired congruence property. ©
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§5. The Determinant of the Evaluation Map

In this §, we prepare for the discussion of the following § by showing that (at least if
the base is an algebraically closed field, and the elliptic curve in question is “sufficiently
generic,” then) the determinants of the evaluation maps of Propositions 2.2, 2.3, have a
particularly simple form, so long as they are not identically zero (Theorem 5.6).

Here, we use the notation of §2, except that we also assume (unless specified otherwise)
that S = Spec(k), where k is an algebraically closed field.

Remark. In fact, logically speaking, we shall only use the theory of this § in the case where
char(k) = 0. Thus, the reader who is only interested in material that is logically necessary
for the proofs of the main theorems of this paper may assume in this § that char(k) = 0.

In particular, in this §, E → S will be a (proper!) elliptic curve, and S = S∞. Thus, since
we do not have to deal with log structures, metrized line bundles, etc., the discussion of
§2 simplifies substantially. Also, in this §, we will assume that

L = L = OE(d · [e])

and that we are given a symmetric Lagrangian subgroup

H ⊆ GL

i.e., a Lagrangian subgroup which is mapped to itself under the automorphism of GL
induced by the automorphism (−1) : E → E (“multiplication by −1”) of E. Also, we
assume that H is of multiplicative type, i.e., that H is étale locally isomorphic to μd. Since,
however, k is algebraically closed, this implies that H ∼= μd. Let us fix an identification:

H = KH = μd

Then

dEH = dE/KH
∼= H∗ = Z/dZ

(where the “∗” denotes the Cartier dual). In particular, under these assumptions, if
char(k) = p > 0, then it follows that E is an ordinary elliptic curve (i.e., its Hasse in-
variant is nonzero).

Conversely, if char(k) = 0 or E is ordinary, then I claim that there exists a symmetric
Lagrangian subgroup H ⊆ GL of multiplicative type. Indeed, by the discussion preceding
Chapter IV, Definition 1.3, it follows that the existence of such an H amounts to the issue
of whether or not a certain exact sequence Z-modules (character groups)
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0 → Z/dZ →?? → Z → 0

equipped with a Z/2Z = {±1}-action splits. If d is odd, then the existence of such
a splitting follows from the fact that H1(Z/2Z,Z/dZ) = 0. If d is even, and k is of
characteristic 0, the existence of such a splitting follows from “the existence of a symmetric
θ-structure on a totally symmetric ample line bundle” [Mumf1], Remark 2, p. 318. If d
is even, and k is of positive characteristic, then the existence of such a splitting follows
from the fact that the relevant class in H1(Z/2Z,Z/dZ) is locally constant, hence may be
computed after lifting the elliptic curve in question to characteristic 0. This completes the
verification of the claim.

Thus, other than the condition that E be ordinary if char(k) > 0, the assumption of
the existence of an H as above does not result in any loss of generality.

The Lagrangian subgroup H ⊆ GL defines a line bundle LH on EH = E/KH which
descends L. Since L and H ⊆ GL are symmetric, it follows that LH is also symmetric.
Since LH is of degree 1, it thus follows that

LH
∼= OEH

(εH)

for some unique εH ∈ EH(k), which satisfies 2 · εH = 0. If G is a finite, flat subgroup
scheme of E or EH , let us write [G] for the divisor in E or EH defined by G. We will also
use this notation for translates of G. Before continuing our discussion, we need certain
basic facts concerning the various line bundles that appear:

Lemma 5.1. We have:

[KH ] ∼ (d − 1) · [e] + [δ]

where “∼” denotes linear equivalence of divisors on E; δ = e if d is odd; and δ = (1
2 )μ ∈

KH(k) ⊆ E(k), i.e., the unique generator of the subgroup μ2(k) ⊆ μd(k) = KH(k), if d is
even.

Proof. Indeed, this sort of equality may be proven by lifting to characteristic 0. Thus,
for the rest of the proof, we assume that char(k) = 0. Then KH is étale over k, so

[KH ] =
∑

α∈KH(k)

[α]

If α ∈ KH(k) is such that α �= −α, then both [α] and [−α] appear in the sum, and
[α] + [−α] ∼ 2[e]. Moreover, the only [α]’s such that α = −α are [e] and [δ]. Substituting
these two observations into the above sum thus yields the result. ©
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Lemma 5.2. We have: εH = eH (the origin of EH) if d is odd; εH ∈ dEH(k) if d is
even and char(k) = 2; and εH ∈ EH(k)\dEH(k) is of order precisely 2 if d is even and
char(k) �= 2.

Proof. Suppose first that d is odd. Then since the line bundle L = OE(d · [e]) is not fixed
by translation by any point of E(k) of order precisely 2, and, moreover, the points of order
2 of E(k) are in bijective correspondence with the points of order 2 of EH(k), the fact that
εH = eH follows from the fact that L ∼= OE([KH ]) (cf. Lemma 5.1).

Now suppose that d is even and char(k) = 2. In this case, Z/2Z ⊆ Z/dZ ∼= dEH(k) is
equal to the entire set of points in EH(k) annihilated by 2. Thus, εH ∈ dEH(k).

Finally, suppose that d is even and char(k) �= 2. Since we know that 2 · εH = 0, it
follows that it suffices to prove that εH �∈ dEH(k). Next, observe that since there exists an
isomorphism dE ∼= H × H∗ such that the projection to the factor H∗ coincides with the
morphism dE → dEH

∼= H∗, it follows that there exists an element ε̃ ∈ E(k) whose order is
precisely 2 and which maps to the nonzero element of Z/2Z ⊆ Z/dZ ∼= dEH(k) ⊆ EH(k).
On the other hand, by Lemma 5.1, we have OE([KH ]) = (d − 1) · [e] + [(1

2 )μ] �∼= L, so
εH �= eH . Since T ∗

ε̃
(L) ∼= L (here we use the fact that d is even), it thus follows that

OE([ε̃ + KH ]) �∼= L, which implies that εH is not equal to the image of ε̃ in EH(k). Thus,
we conclude that εH �∈ dEH(k), as desired. ©

Corollary 5.3. Suppose that d is odd, or that d is even and char(k) = 2. Then [εH +
dEH ] = [dEH ] (an equality, not just a linear equivalence, of divisors on EH).

Let us write M def= OEH
([εH + dEH ]). Note that there is an evident action of dEH on

M (resulting from the fact that dEH stabilizes the divisor [εH + dEH ]). If one descends
to M to E = EH/dEH via this action, then the resulting line bundle on E is simply

OEH
([ε])

where ε ∈ E(k) is the image of εH .

Lemma 5.4. Suppose that d is even, and char(k) �= 2. Let Lχ be the line bundle on
E = EH/dEH given by descending the line bundle M relative to the action of dEH

∼= Z/dZ
on M given by twisting the evident action by the unique nontrivial character χ : dEH

∼=
Z/dZ → μ2 = {±1} of order 2. Then Lχ ∼= OE(e).

Proof. Clearly, deg(Lχ) = 1. Since 2 · εH = 0, and χ⊗2 = 1, it follows that Lχ is
symmetric. Thus, Lχ ∼= OE(εχ), for some unique εχ ∈ E(k), which is necessarily of order
2. As observed above, if one descends M via the evident action of dEH on M, one gets
OEH

([ε]), where ε ∈ E(k) is the image of εH . Moreover, ε = (1
2 )μ (by Lemma 5.2). Since
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the kernel of the morphism Pic0(E) → Pic0(EH) induced by EH → E = EH/dEH has a
unique element of order precisely 2, it follows that εχ is the unique element of E(k) of order
≤ 2 such that εχ �= ε, OE(εχ)|EH

∼= M. But observe that OE(e)|EH
= OEH

([dEH ]) ∼= M
(where the last isomorphism follows from the fact that M is of even degree, hence fixed
by translation by εH , which is order 2). Thus, we conclude that εχ = e, as desired. ©

Corollary 5.5. Suppose that 0 �= s ∈ Γ(EH ,M) has the following property with respect
to the evident action of dEH on M: s is fixed by this action if d is odd, or if d is even and
char(k) = 2; dEH acts on s by the character χ (of Lemma 5.4) if d is even and char(k) �= 2.
Then the inverse image in E via E → EH = E/KH of the zero locus V (s) of s is equal to
the divisor [dE].

Proof. Indeed, if d is odd, or if d is even and char(k) = 2, then s descends to a nonzero
section s′ ∈ Γ(EH ,OE(ε)). Since OE(ε) is of degree 1, V (s′) = [ε]. Thus, V (s) = [εH +
dEH ] = [dEH ] (by Corollary 5.3), so the inverse image in E of V (s) is [dE], as desired.
If d is even and char(k) �= 2, then (by Lemma 5.4) s descends to a nonzero section
s′ ∈ Γ(EH ,OE(e)). Since OE(e) is of degree 1, V (s′) = [e], so the inverse image in E of
V (s) is [dE], as desired. ©

Now we are ready to return to our discussion of the evaluation maps of §2. In the
present discussion, we shall omit the symbol “∞” from the various notations of §2, since
here, S = S∞, E = E∞, etc. We would like to consider the morphism ΞH

L,d,α of Proposition

2.3, for a point α ∈ E†(k). Write

V
def= Γ(E†

H,[d],LH |
E
†
H,[d]

)<d

Also, let us denote the elements of dEH = Z/dZ by ( i
d)H , for i = 0, . . . , d − 1. Then the

morphism of Proposition 2.3 becomes

ΞH
α : V →

d−1⊕
i=0

{
OEH

([εH + (
i

d
)H ])|α

}

(where we identify LH with OEH
([εH ])).

Now let β ∈ dE
†
H(k) ∼= dEH(k). We would like to consider the relationship between

ΞH
α and ΞH

α+β . Note that both maps involve restricting sections ∈ V to the same points

inside E
†
H,[d], except in a different order. Thus, one may think of ΞH

α+β as the result of
composing ΞH

α with the permutation of the summands in the direct sum on the right
(which are indexed by i = 0, . . . , d − 1) by the permutation i �→ i + iβ modulo d (where
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( iβ

d )H ∈ dEH(k) is the element defined by β). Thus, if one takes determinants, one obtains
that the determinant

det(ΞH
α+β) ∈ det(V )−1 ⊗k OEH

([εH + dEH ])|α

is equal to

(−1)sgn(β) · det(ΞH
α ) ∈ det(V )−1 ⊗k OEH

([εH + dEH ])|α

where sgn(β) is the sign of the permutation i �→ i + iβ modulo d. Note that if d is odd,
or if d is even and char(k) = 2, then (−1)sgn(β) is always 1. If d is even and char(k) �= 2,
then (−1)sgn(β) = χ(β), where χ is the character of Lemma 5.4. Thus, if one lets α be the
tautological point ∈ E†(E†), one gets a section

det(ΞH
α ) ∈ det(V )−1 ⊗k Γ(E†,OEH

([εH + dEH ])|α)

which, by Lemma 2.4, descends to E. Moreover, clearly this determinant of ΞH
α only

depends on the image of α in EH . Thus, since this image is just the tautological point
∈ EH(EH), we get a section

det(ΞH
α ) ∈ det(V )−1 ⊗k Γ(EH ,OEH

([εH + dEH ])) = det(V )−1 ⊗k Γ(EH ,M)

which, by the above discussion, satisfies the hypotheses of Corollary 5.5 (as soon as it is
nonzero). In other words, we see that the zero locus of det(ΞH

α ) on E is equal either to all
of E or to [dE]. That is to say, we have proven the following:

Theorem 5.6. Let E be an elliptic curve over an algebraically closed field k. Suppose
that E is ordinary if char(k) > 0. Let d ≥ 1 be an integer; L def= OE(d · [e]); and α ∈ E†(k).
Then if the morphism

ΞL,d,α : Γ(E†
[d],L|

E
†
[d]

)<d → L|
T ∗α (dE†)

is an isomorphism for any single α ∈ E†(k), then it follows that it is an isomorphism for
all α ∈ E†(k) except for those which map to dE(k) ⊆ E(k). Moreover, if this morphism
is an isomorphism for any single α ∈ E†(k), then the scheme-theoretic zero locus of the
determinant of this morphism in the case where α is the tautological point ∈ E†(E†) is
precisely d times the divisor E† ×E (dE) ⊆ E†. Finally, the same (except with “d times”
in the preceding sentence deleted) assertions hold for the morphism
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ΞH
L,d,α : Γ(E†

H,[d],LH |
E
†
H,[d]

)<d → LH |
T ∗α (dE

†
H

)

where H ⊆ GL is any Lagrangian subgroup (cf. Chapter IV, Definition 1.3).

Proof. It remains only to note that, in the statement of Theorem 5.6, it is not necessary
to assume that the Lagrangian subgroup is symmetric or of multiplicative type. Indeed,
the assertions in the statement of Theorem 5.6 concerning the Lagrangian subgroup follow
immediately from the general theory of §2, especially Proposition 2.3; Chapter IV, Theorem
1.4. Note that we need the “d times” in the “non-Lagrangian case” because the matrices
appearing in the non-Lagrangian case amount essentially to d copies (arranged diagonally)
of the matrices appearing in the Lagrangian case. Thus, the determinants must be raised
to the d-th power. ©

§6. The Generic Case

In this §, we give an explicit computation of a certain evaluation map (i.e., a map
like that defined in §2) defined for certain degenerating elliptic curves in mixed character-
istic. In particular, we will show that the determinant of this map is nonzero in mixed
characteristic. This result, combined with the results of §5, will allow us to conclude the
generic bijectivity of certain evaluation maps in mixed characteristic. Moreover, this sort
of generic bijectivity result will be the crucial technical ingredient in the proof of the main
results of Chapter VI.

In this §, we use the notation of the first portion of §3, i.e., the discussion of the
degenerating case (preceding the “Analytic Continuation Argument”). Let N ≥ 1 be an
integer which is prime to d and invertible in the base ring O (a Zariski localization of
the ring of integers of a number field). Let p be a prime number that appears as the
characteristic of a residue field of O. We would like to concentrate our attention, in this
§, on integral structures at the prime p. Let

AN
def= O[[q

1
N·d ]]; SN

def= Spec(O[[q
1

N·d ]]) = Spec(AN )

Thus, we have a natural finite morphism SN → S, which we regard as a “base extension”
of the base S = Spec(O[[q]]) of (the first portion of) §3. Note that if one thinks of Ẽ as
being “Gm/qd·Z” then qd/N ∈ Gm(USN

) (where USN

def= Spec(AN [q−1]) (⊆ SN )) defines a
rational point

η ∈ C̃d(SN )
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which, relative to the group structure on C̃d over US , is annihilated by N . Similarly,
q ∈ Gm(USN

) defines a rational point

τ ∈ Ẽd(S) ⊆ C̃d(SN )

which is a torsion point of order d. In particular, by using the group scheme structure on
Ẽd (together with the fact that the action of Ẽd on itself extends to an action of Ẽd on
C̃d), we may also form the points

η · τβ ∈ C̃d(SN )

(for β ∈ Z). (Here, we use the letter “β” so that our notation will be consistent with the
notation in the discussion of d-torsion points in §3.) Note that, relative to the theory of
Chapter IV, §4, the point of the “S1” associated to Ẽ defined by τ (respectively, η · τβ) is
equal to 1

d (respectively, 1
N + β

d ).

Next, let us write e
Ẽd

⊆ Ẽ(S) for the identity element of the group scheme Ẽ. Write

L̃ def= O
C̃d

(e
Ẽd

)

for the corresponding line bundle on C̃d. Note that since the points η · τβ do not intersect
e

Ẽd
, it follows that the restriction of the line bundle L̃ to any of these points η · τβ admits

a natural trivialization. In this §, we would like to consider the following evaluation map
(cf. the evaluation maps defined in §2):

Ξη : Γ(C̃d, L̃ ⊗O
C̃d

F d(Ret

E
†
C̃d,[d]

)) ⊗OS
OSN

−→
d−1⊕
β=0

(L̃|η·τβ ) =
d−1⊕
β=0

OSN

given by restriction. Note that here, to define the evaluation map Ξη, we use the facts that
(i) Ret

E
†
C̃d,[d]

⊗Q = R
E
†
C̃d,[d]

⊗Q; (ii) in characteristic zero, the torsion points η, τ ∈ C̃d(SN )

lift naturally to torsion points of E
†
C̃d,[d]

(SN ⊗ Q) (where “torsion” refers to the group

structure on E
†
C̃d,[d]

|USN
). This much gives us a map Ξη ⊗ Q; to see that Ξη is, in fact,

defined without tensoring with Q, we need an integrality statement like that at the end of
Theorem 3.1. The reason we cannot apply the integrality statement at the end of Theorem
3.1 directly is that instead of restricting to d-torsion points (i.e., τβ ’s), we are restricting
to d-torsion points shifted by η. This is not a problem, however, since, just as in the proof
of the integrality statement at the end of Theorem 3.1, we see that it suffices to prove that
the “T [n]’s” (notation of the first part of §3) take on integral values for T = d

N + β. But
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since we assumed that N ∈ O×, this is an easy exercise. (For instance, it may be proven by
observing that it suffices to prove it locally at an arbitrary prime number l not dividing N ;
but then d

N may be l-adically approximated by an integer, and it is well-known that T [n]

takes integral values at integers; thus, the integrality of T [n] for T = d
N + β at the prime

l follows from the fact that Zl is l-adically closed in Ql.) This completes the definition of
Ξη.

In this §, we would like to study the extent to which Ξη is an isomorphism. To do this,
we would like to compute the determinant of Ξη. To compute this determinant explicitly,
we must introduce various explicit bases of the domain and range of Ξη. Note that the
range of Ξη already has a natural basis (over OSN

) given by the fact that it is naturally a
direct sum of copies of OSN

. Next, we consider the domain of Ξη. To simplify notation,
let us write

V
def= Γ(C̃d, L̃ ⊗O

C̃d

F d(Ret

E
†
C̃d,[d]

)) ⊗OS
OSN

Note that V has a natural filtration Fn(V ), induced by the filtration on Ret

E
†
C̃d,[d]

(cf.

Theorem 3.1). For 0 ≤ n ≤ d − 1, the subquotient (Fn+1/F n)(V ) is a (locally) free OSN
-

module of rank 1. By further localizing O, we may assume that these modules are, in fact,
free, hence generated (over OSN

) by some φn ∈ Fn+1(V ), where 0 ≤ n ≤ d − 1. Thus,

φ0, . . . , φd−1

form a basis of V over OSN
.

Next, let us recall the infinite étale covering C∞
Ŝ

→ C∞
Ŝ

/(d ·Zet) = (C̃d)Ŝ
. We would

like to pull-back the various sections φi (for i = 0, . . . , d− 1) over (C̃d)SN

def= C̃d ×S SN to
C∞

ŜN

def= C∞
Ŝ

×
Ŝ

ŜN . If we do this, then it follows from the definition of the “Ret” in §3
(and Chapter III, §6) that we can write

φi =
i∑

j=0

ζi,j · T [j]

where ζi,j ∈ Γ(C∞
ŜN

, L̃|C∞
ŜN

). Note, moreover, that for each i = 0, . . . , d− 1, the section ζi,i

descends to (C̃d)SN
(cf. the theory of Chapter III, §6). Since φi generates (F i+1/F i)(V ),

and restriction of sections of Γ((C̃d)SN
, L̃

(C̃d)SN

) to η clearly defines an isomorphism

Γ((C̃d)SN
, L̃

(C̃d)SN

) ∼= OSN
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it follows that ζi,i(η) ∈ O×SN
. Thus, by replacing φi by an appropriate O×SN

-multiple of φi,
we may assume that the φi’s have been normalized so that, for i = 0, . . . , d − 1, we have

ζi,i(η) = 1

(cf. the theory of Chapter III, §6).

Now we are ready to compute the determinant of Ξη. Relative to the bases chosen
above, this amounts to computing the determinant of the matrix

M = {Mi,β}

where i, β = 0, . . . , d − 1, and

Mi,β
def= φi(η∞ · τβ

∞) =
i∑

j=0

ζi,j(η∞ · τβ
∞) · (T [j]|T= d

N +β)

Here, η∞ ∈ C∞
ŜN

(ŜN ), τ∞ ∈ C∞
ŜN

(ŜN ) are the points defined by q
d
N , q ∈ Gm(USN

), respec-
tively, by thinking of C∞

ŜN

as (the q-adic completion of) a sort of Néron model for Gm over
USN

(cf. the discussion at the beginning of Chapter III, §5). Thus, η∞, τ∞ project to η,
τ , respectively.

We would like to show that the determinant in question is invertible as a section of
OSN

. Since sections of OSN
are invertible if and only if they are invertible modulo q

1
N ,

it thus follows that it suffices to show that det(M) is invertible modulo q
1
N . Thus, in the

following computations, we will work modulo q
1
N .

Next, let us observe that, modulo q
1
N , the rational points η∞ ·τβ

∞ (for β = 0, . . . , d−1)
of C∞

ŜN

over ŜN all lie in the irreducible components of the special fiber of C∞
ŜN

labeled
1, . . . , d − 1 (cf. the discussion at the beginning of Chapter III, §5). Indeed, these d − 1
irreducible components include a total of precisely d nodes, and it is these d nodes which
are images of the η∞ · τβ

∞ (for β = 0, . . . , d − 1) modulo q
1
N . On the other hand, the

restriction of the line bundle L̃ to the union of these d−1 irreducible components is clearly
equal to the trivial bundle. Let us write U for the union of these d− 1 components. Then
U is a chain of d− 1 copies of P1 over O. In particular, U is reduced and connected, so it
follows that

Γ(U , L̃|U ) = O

i.e., sections of L̃ are constant over U , hence, in particular, assume the same values at the
points η∞ · τβ

∞ (for β = 0, . . . , d − 1) that we are interested in.

Thus, modulo q
1
N , we have:
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Mi,β ≡
i∑

j=0

ζi,j(η∞) · (T [j]|T= d
N +β)

Now we would like to perform various elementary row operations on this matrix. Here,
we think of the matrix entries (i, β) where i is fixed and β varies as a row. Thus, we will
speak of “the row (i,∼).” Note first of all that the row (0,∼) consists of 1’s, i.e.,

(0, β) ≡ ζ0,0(η∞) · (T [0]|T= d
N +β) = 1

(where “≡” in the following discussion will always mean “modulo q
1
N ”). Now I claim that

by performing elementary row operations on the matrix M, one may transform this matrix
(modulo q

1
N ) into a matrix M′ = {M ′

i,β}, where

M ′
i,β ≡ ζi,i(η∞) · (T [i]|T= d

N +β) = T [i]|T= d
N +β

Indeed, we prove this for each row (i,∼) by induction on i. First of all, it is clearly already
true for i = 0. The induction step is then proven by observing that the difference between
the original row (i,∼) of M and the row (i,∼) of M′ is

≡
i−1∑
j=0

ζi,j(η∞) · (T [j]|T= d
N +β)

i.e., the “difference row” may be thought of as the sum (for j = 0, . . . , i − 1) of rows of
the form: “the constant ζi,j(η∞) times the row (j,∼) of M′.” Since for j < i, we have
already converted the row (j,∼) of M into the row (j,∼) of M′ by means of elementary
row operations (by the induction hypothesis), we thus see that further elementary row
operations will allow us to convert the row (i,∼) of M into the row (i,∼) of M′, as
desired. This completes the proof of the claim.

Thus, it suffices to prove that det(M′) is invertible. Since

M ′
i,β ≡ T [i]|T= d

N +β

this amounts to an elementary and explicit calculation. Of course, one may perform this
calculation explicitly, but one indirect way to show that this determinant is invertible is
the following: It suffices to show that this determinant is invertible at every prime l that
does not divide N . At such an l, d

N may be l-adically approximated by integers. Moreover,
since Z×l is an l-adically closed subset of Ql, it thus suffices to prove that the determinant
is invertible when d

N is replaced by an arbitrary I ∈ Z. Thus, it suffices to show the
invertibility of the matrix M′′[I] = {M ′′

i,β [I]}, where
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M ′′
i,β [I] = T [i]|T=I+β

But now let us note that by repeated application of the relation δ(T [i]) = T [i−1], one verifies
easily that M′′[I] may be converted into M′′[I +1] by means of elementary row operations.
In particular, det(M′′[I]) is independent of I, so it suffices to show that det(M′′[0]) is
invertible. But

M ′′
i,β [0] = T [i]|T=β

is 0 if β < i, and 1 if β = i. That is to say, the matrix M′′[0] is upper triangular, with 1’s
along the diagonal. Thus,

det(M′′[0]) = 1

as desired. In other words, we have proven the following result:

Lemma 6.1. The evaluation map

Ξη : Γ(C̃d, L̃ ⊗O
C̃d

F d(Ret

E
†
C̃d,[d]

)) ⊗OS
OSN

−→
d−1⊕
β=0

(L̃|η·τβ ) =
d−1⊕
β=0

OSN

is an isomorphism.

Now we would like to consider the consequences of Lemma 6.1, in light of the theory
of §5. To do this, let p be a generic point of SN ⊗ Fp. Write

W
def= Spec(ÔSN ,p)

Thus, W is a trait, i.e., the spectrum of a discrete valuation ring (of mixed characteristic).
Let us write pW for the closed point of W . In the following, we would like to work over
W . To do this, we first pull-back the various objects that we have been working with over
SN to W . Thus, we obtain a torsor

Ẽ
†
W,[d] → ẼW

together with a line bundle L̃W on ẼW , and a d-torsion point τW ∈ ẼW (W ). In the
following discussion, we will often wish to base-change from W to the bases X

def= ẼW ,
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Y
def= Ẽ

†
W,[d]. When we wish to think of these objects not as group schemes over W , but

rather as base extensions of W , we will use the notation “X,” “Y ” for ẼW , Ẽ
†
W,[d]. We

will denote the result of base-changing objects over W (which have a subscript “W”) to
objects over X and Y by means of a subscript X or Y . Finally, let us write

δX ∈ ẼX(X) = ẼW (X); δY
def= δX |Y ∈ ẼW (Y ); δ

†
Y ∈ Ẽ

†
Y,[d](Y ) = Ẽ

†
W,[d](Y )

for the tautological points given by the respective identity maps.

Next, we would like to consider the following evaluation map (where the requisite
integrality follows from the statement at the end of Theorem 3.1):

ΞTX : V TX
def= Γ(ẼX , (T ∗δX

L̃X) ⊗O
ẼX

F d(Ret

Ẽ
†
X,[d]

)) −→
d−1⊕
β=0

(T ∗δX
L̃X)|τβ

X

(where TδX
: ẼX → ẼX is the morphism given by translation by the point δX ∈ ẼX(X))

of locally free OX -modules of rank d. Write ηW for the pull-back of the torsion point η of
Lemma 6.1 to a point of X(W ) = ẼW (W ). Note that since N ∈ O×W , and ηW is an N -

torsion point, it follows that ηW lifts naturally to a unique N -torsion point η
†
W ∈ Ẽ

†
W,[d](W )

(cf. Chapter III, Corollary 5.9). Moreover, since d
N is a p-adic integer, translation by d

N

preserves the “T [n]” (over SN or over W ). Thus, we see that the morphism T
η
†
W

(translation

by η
†
W ) on Ẽ

†
W,[d] induces a filtration-preserving automorphism

T ∗
η
†
W

[Ret] : Ret

Ẽ
†
W,[d]

→ Ret

Ẽ
†
W,[d]

Thus, we get an isomorphism

T ∗
η
†
W

[V ] : Γ(ẼW , L̃W ⊗O
ẼW

F d(Ret

Ẽ
†
W,[d]

)) ∼= Γ(ẼW , (T ∗ηW
L̃W ) ⊗O

ẼW

F d(Ret

Ẽ
†
W,[d]

))

But now observe that the domain of T ∗
η
†
W

[V ] is simply VW (i.e., the pull-back to W of the

OSN
-module “V ” that we considered earlier), while the range of T ∗

η
†
W

[V ] is η∗W (V TX ), i.e.,

the restriction of the OX -module V TX considered above to the point ηW ∈ X(W ). Relative
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to these observations, we thus see that the restriction to W of the morphism Ξη of Lemma
6.1 may be thought of as:

Ξη|W = η∗W (ΞTX) ◦ T ∗
η
†
W

[V ]

In particular, it follows from Lemma 6.1 that det(ΞTX) (which is naturally a section of a
certain line bundle on the scheme X) is not identically zero on (the irreducible scheme)
X ⊗ (OW /pW ). In other words, the vanishing locus of det(ΞTX) is finite and flat over W ,
hence is determined by its restriction to the generic fiber of X = ẼW → W .

Next, we would like to work over the base Y = Ẽ
†
W,[d]. Note that over Y , translation

by δ
†
Y defines an isomorphism

T ∗
δ
†
Y

[V ] : Γ(ẼY , L̃Y ⊗O
ẼY

F d(Ret

Ẽ
†
Y,[d]

)) ⊗Q ∼= Γ(ẼY , (T ∗δY
L̃Y ) ⊗O

ẼY

F d(Ret

Ẽ
†
Y,[d]

)) ⊗Q

Note that here, we must tensor with Q since (one may easily check that) δ
†
Y does not pre-

serve the “et-integral structure Ret” of §3. Next, let us consider the “composite evaluation
map”:

ΞTX |Y ◦ T ∗
δ
†
Y

[V ] : Γ(ẼY , L̃Y ⊗O
ẼY

F d(Ret

Ẽ
†
Y,[d]

)) ⊗Q −→
d−1⊕
β=0

(T ∗δY
L̃Y )|τβ

Y
⊗Q

Now, sorting through the notation, one sees that this composite evaluation map is (up
to translation by the torsion point “εH” of §5) the same as the evaluation map denoted
“ΞH

α ” in §5. Since the determinant of this evaluation map is not identically zero (by what
we did in the preceding paragraph), it thus follows from Theorem 5.6, that (if we denote
by εW ∈ ẼW (W ) = X(W ) the point denoted by “εH” in §5), we thus obtain that the
vanishing locus of the determinant of this composite evaluation map is given by the divisor∑d−1

β=0 [εW ·τβ
W ] on ẼW ⊗Q. Combining this with what we did in the preceding paragraph,

we thus conclude that:

The vanishing locus of det(ΞTX) is given by the divisor
∑d−1

β=0 [εW · τβ
W ]

on X = ẼW .

Now recall the semi-abelian scheme E → S considered at the beginning of §3. One
may think of Ẽ as being the quotient E → Ẽ of E by a subgroup scheme of E which is
naturally isomorphic to μd. Alternatively, relative to Schottky uniformizations, one may
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think of the isogeny E → Ẽ as corresponding to the morphism Gm/qZ → Gm/qd·Z induced
by the morphism “raising to the d-th power” on Gm. If we pull-back the isogeny E → Ẽ
to W , we get an isogeny

EW → ẼW

When we wish to think of EW → W as a base extension of W , we will denote EW by
Z

def= EW , and write γZ ∈ EW (Z) for the identity morphism. Finally, we will denote the

pull-backs of the torsor E
†
[d] → E to W , Z by E

†
W,[d] → EW , E

†
Z,[d] → EZ , respectively.

If we let LW
def= OEW

(eEW
) (where eEW

is the origin of EW ), then we have an
evaluation map for EZ (where the requisite integrality follows from the statement at the
end of Theorem 3.1):

ΠTZ : Γ(EZ , (T ∗γZ
L⊗d

Z ) ⊗OEZ
F d(Ret

E
†
Z,[d]

)) −→ (T ∗γZ
L⊗d

Z )|(dEZ)

(Here dEZ ⊆ EZ is the subgroup scheme of d-torsion points in EZ .) Thus, one observes,
relative to the theory of §5, that for an appropriate choice of “Lagrangian subgroup H”
(which lifts μd ⊆ E), the evaluation maps ΠTZ and ΞTX correspond to one another (up to
translation by εW ) with respect to the operation of “taking invariants with respect to the
Lagrangian subgroup” (cf. the discussion of §5). Thus, we obtain the following result,
which is the main result of this §:

Theorem 6.2. For any integer d ≥ 1, the scheme-theoretic zero locus of the determinant
of the evaluation map

ΠTZ : Γ(EZ , (T ∗γZ
L⊗d

Z ) ⊗OEZ
F d(Ret

E
†
Z,[d]

)) −→ (T ∗γZ
L⊗d

Z )|(dEZ)

on Z = EW is given precisely by d · [dEZ ] ⊆ EZ , where [dEZ ] is the divisor defined by the
kernel of multiplication by d on EZ .

Here, W is a trait of mixed characteristic (0, p); EW → W is an elliptic curve with
the property that the moduli of the special fiber over W are generic in characteristic p; LW

is the line bundle defined by the identity element on EW ; EZ
def= EW ×W Z, LZ = LW |Z ;

γZ ∈ EZ(Z) = EW (Z) is the point defined by the identity morphism; TγZ
is translation by

the point γZ ; E
†
Z,[d] is the torsor “E

†
[d]” (cf. §2) for the elliptic curve EZ ; and Ret

E
†
Z,[d]

is

the “et-integral structure” (cf. Definition 3.2) on the filtered sheaf of functions R
E
†
Z,[d]

on

E
†
Z,[d].
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Note that in the above proof, we made essential use of the μd-isogeny (i.e., isogeny
whose kernel may be identified with μd)

E → Ẽ

That is to say, we proved Theorem 6.2, which essentially concerns objects over E, by
descending objects on E to Ẽ via this isogeny, and then analyzing the resulting objects
over Ẽ (cf. the discussion preceding Lemma 6.1). In fact, however, one can also give a
proof of Theorem 6.2 by descending with respect to the Z/dZ-isogeny

Ẽd → E

(cf. §3 for an explanation of the notation – roughly speaking, this is the isogeny that looks
like the isogeny

“Gm/qdZ → Gm/qZ”

arising from the identity Gm → Gm on Gm), and then applying the theory developed in
§4 to the descended objects on E. The advantage of the μd-isogeny proof given above is
that it allows one to calculate the relevant matrix very explicitly (up to the elementary row
operations) without much preparation, and is independent of the rather technical theory
discussed in §4. On the other hand, once one assumes the theory of §4, the proof of
Theorem 6.2 is relatively short and proceeds as follows:

Alternate Proof of Theorem 6.2:

We omit various “general nonsense” details concerning “descent with respect to the
isogeny in question” and “base-change to W” that were discussed extensively in the pre-
ceding proof of Theorem 6.2 and which are the same in both proofs.

Recall from the discussion of §3 that E
†
C̃d,[d]

, i.e., the “E†
[d]” for C̃d, is precisely the pull

back via the compactified isogeny C̃d → C of the usual universal extension torsor E
†
C → C

over C (⊇ E). Moreover, it also follows from the discussion of §3 that the étale-integral

structure on E
†
C̃d,[d]

is precisely the pull-back of the étale-integral structure defined on E
†
C

in Chapter III, Proposition 6.1. Thus, in summary, although we are ultimately interested
in proving the result (i.e., bijectivity) for the evaluation map for functions in Ret

E
†
C̃d,[d]

, it

suffices (assuming that we can descend the relevant line bundle on C̃d down to C – cf. the
following paragraph) to prove the result for the evaluation map for functions in Ret

E
†
C

.
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The final detail that we must take care of before we discuss the relevant evaluation
map on C is the specification of the relevant line bundle on C̃d. More precisely, this “line
bundle on C̃d” will be a metrized line bundle on Ẽ∞,S . Moreover, we want this metrized
line bundle to descend to a metrized line bundle on E∞,S via the Z/dZ-isogeny Ẽd → E.
We take this metrized line bundle on Ẽ∞,S to be

L̃
st,η̃

(respectively, L̃
ev

st,η̃)

if d is odd (respectively, even) – i.e., the metrized line bundles “Lst,η,” “Lev

st,η” of §1 for Ẽ∞,S

(as opposed to E∞,S). Here, η̃ is the torsion point of Ẽ∞,S(SN ) defined by qN ∈ Gm(USN
)

(where we think of Ẽ∞,S as “Gm/qdZ). Thus, it remains only to see that the metrized
line bundle that we have chosen descends via Ẽd → E. Going back to the definition of

L̃
st,η̃

, L̃
ev

st,η̃ in §1, we see that these metrized line bundles are obtained by translating “L̃st,”

“L̃
ev

st ” by η̃ and then adding various d-invariant ψ’s. Since it is clear that the d-invariant

ψ’s descend, it thus suffices to see that L̃st, L̃
ev

st descend. But this is clear from the explicit
forms of these line bundles given in Chapter IV, Lemma 5.4. Let us denote the resulting
descended metrized line bundle on E∞,S by

L

Note that L has relative degree 1 over the base. Moreover, the curvature of L is the same
same as the curvature of OC(eC) (where eC is the identity element ∈ C(S) of C). Thus,
one may think of L as a sort of twisted form of OC(eC). This “twist” may be resolved
by pulling back to an appropriate covering of C (cf. Chapter IV, §2,3; §4 of the present
Chapter). Since this twist is defined by η (def= the image of η̃ in E∞,S), and η does not lie
in the identity component of the special fiber of E∞,S (a consequence of the fact that N is
assumed to be prime to d), it follows that the twist applied to OC(eC) to obtain L is of the
sort effected by a character “χL” which falls under Case III (relative to the terminology
of §4).

Thus, to summarize, the above discussion shows that it suffices to consider the evalu-
ation map given by evaluating sections of L⊗OC

F d(Ret

E
†
C

) (over E∞,S) on μd ⊆ (Gm)
Ŝ

=

E
Ŝ

↪→ E†
Ŝ

(where E
Ŝ

↪→ E†
Ŝ

is the canonical section κ of Chapter III, Theorem 2.1).
Since this evaluation map is between vector bundles of rank d on S∞, it follows that it
suffices to prove that it is injective modulo any prime p of O, at least after one inverts q.
But this injectivity follows immediately from Corollary 4.7 (applied in the case j

def= d).
Indeed, to see this, we break up the evaluation map of sections of L ⊗OC

F d(Ret

E
†
C

) on

μd ⊆ Gm = E
Ŝ
⊆ E†

Ŝ
into two steps:
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(1) First, we restrict sections of L ⊗OC
F d(Ret

E
†
C

) to E
Ŝ

= (Gm)
Ŝ
⊆ E†

Ŝ
.

(2) Then, we strict functions on E
Ŝ

= (Gm)
Ŝ

to μd ⊆ (Gm)
Ŝ

= E
Ŝ
.

Strictly speaking, the linear independence assertion of Corollary 4.7 implies that the first
restriction (1) is injective. (That is, if it were not, then there would be some A-linear
relation among ζχ

0 , . . . , ζχ
d−1 with at least one coefficient which is nonzero modulo (q, p).

Thus, in particular, we would get a linear relation modulo (qn·cj′ , p) (with at least one
coefficient which is nonzero modulo (q, p)), but this contradicts Corollary 4.7.)

Thus, it remains to see that the second restriction (2) is injective. To see this, first
observe that since we are in Case III, the number “|Cj′ |” (notation of Corollary 4.7) is equal
to j = d, i.e., “modulo qn·cj′ ” (notation of Corollary 4.7) the only χL-special monomials
that may occur (i.e., are nonzero) are OS-multiples of

“U I+i·n”

(where U , n are as in Corollary 4.7; i = 0, . . . , d − 1; and I is some fixed constant,
independent of i) – cf. Schola 4.1. Moreover, “Un” (notation of §4) corresponds precisely to
the standard multiplicative coordinate on E

Ŝ
= (Gm)

Ŝ
(notation of the present discussion).

Let us denote this standard coordinate by V . Thus, we see that the assertion that the
second restriction (2) is injective amounts to the following fact:

For any prime p of O, every polynomial in V of degree ≤ d − 1 which
vanishes modulo p on μd ⊆ (Gm)

Ŝ
= E

Ŝ
is identically 0 modulo p.

But this follows immediately from elementary algebraic geometry as follows: If we com-
pactify Gm by P1, then we see that we are reduced to verifying the assertion that every
global section over P1 of the line bundle

OP1(−[μd] + (d − 1)[∞])

(where “[μd]” is the degree d divisor in Gm ⊆ P1 defined by μd, and “[∞]” is the (degree 1)
divisor on P1 at “infinity”) is identically zero (in every characteristic). But since this line
bundle has degree −1, this assertion is an immediate consequence of elementary algebraic
geometry.

This completes the proof of the various injectivity assertions mentioned above, and
hence of the entire alternate proof of Theorem 6.2. ©
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Chapter VI: The Scheme-Theoretic
Comparison Theorem

§0. Introduction

In this Chapter, we prove the Scheme-Theoretic Comparison Isomorphism. This result
essentially asserts that:

There is a natural bijection between certain natural types of algebraic
functions on the universal extension of an elliptic curve and the “set-
theoretic functions” on the torsion points of the elliptic curve.

This natural bijection is given by restricting the algebraic functions on the universal exten-
sion to the torsion points of the universal extension. This restriction morphism is referred
to as the evaluation map (and is the main topic of Chapter V). Ultimately, the goal of this
paper is to show that the evaluation map is not only a bijection, say, in characteristic zero
(cf. Theorem 3.1), but that it preserves natural integral structures on both sides at all
the primes of the rational number field. In the present Chapter, we address the scheme-
theoretic portion of this goal, namely, we show that we essentially get an isomorphism
schematically over (M1,0)Z (cf. Theorem 4.1). In other words, we show that the integral
structures at all of the finite primes (essentially) coincide.

In §1, we define the algebraic functions on the universal extension that we are inter-
ested in. The sheaves of such functions are called the “{v, et}-push forwards” of a metrized
line bundle. In §2, we study the various basic properties of these push-forwards, with an
eye to proving (in §4) that they are compatible with base-change. In §3, we prove the
comparison isomorphism in characteristic zero, i.e., that the evaluation map is bijective in
characteristic zero (Theorem 3.1). Finally, in §4, we complete the proof of compatibility
with base-change, and show that the evaluation map also (essentially) preserves integral
structures on both sides at all finite primes (Theorem 4.1).

§1. Definition of a New Integral Structure at Infinity

In this §, we prepare for the comparison isomorphism results in the remainder of this
Chapter by introducing a new integral structure in a neighborhood of the divisor at infinity
(i.e., the locus on the base where the log elliptic curve in question degenerates). It will be
relative to this new integral structure that the evaluation map of Chapter V, §2, will turn
out to be an isomorphism.
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In this §, we use the notations of Chapter V, §2. Let us first recall the WE-torsor

E
†
Cd,[d] → Cd

considered in Chapter V, §2. Note that since E
†
Cd,[d] extends the torsor E

†
[d] → E, which

is obtained from E† → E by “pushing out” with respect to multiplication by d on WE , it
follows that the canonical splitting κ (of Chapter III, Theorem 2.1) of E† → E over E

Ŝ
defines a canonical splitting

κ
E
†
[d]

: E
Ŝ
→ (E†

[d])Ŝ

Note that since the étale-integral structure of Chapter V, Theorem 3.1, is defined using
this canonical splitting (cf. Chapter V, §3; Chapter III, §6), it follows that κ

E
†
[d]

defines,

for any integer i ≥ 0, a direct sum decomposition

F i(Ret

(E
†
[d])Ŝ

) ∼=
i−1⊕
j=0

1
j!

· τ⊗j
E |E

Ŝ

(cf. Chapter V, Theorem 3.1). Similarly, one sees easily that by translation by d-torsion
points, we get analogous direct sum decompositions of F i(Ret

(E
†
Ed,[d])Ŝ

) over the q-adic

completions of Ed at the other d − 1 connected components of the special fiber of Ed.
Note, however, that these translated decompositions do not glue together at the nodes:
indeed, if they did, then we would obtain that κ

E
†
[d]

extends over Cd, which is absurd (cf.

Chapter III, Theorem 5.6).

Now let us suppose that we are given a “valuation”

v ∈ Q≥0 · log(q)

(where Q≥0 is the set of nonnegative rational numbers, and “log(q)” is a formal symbol).
In the following, we will write

exp(v) def= qv/log(q)

We would like to construct, for each integer i ≥ 0, an S-flat coherent sheaf

F i(Ret

E
†
Cd,[d]

{v})
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on Cd associated to v, as follows. First of all, over US = S − D, we have

F i(Ret

E
†
Cd,[d]

{v})|US

def= F i(Ret

E
†
Cd,[d]

|US
)

Next, let us define F i(Ret

E
†
Cd,[d]

{v}) over E
Ŝ

by using the direct sum decomposition given

above in the following way: We give F i(Ret

E
†
Cd,[d]

{v})|E
Ŝ

the integral structure (relative to

this decomposition) defined by:

F i(Ret

E
†
Cd,[d]

{v})|E
Ŝ

def= OE
Ŝ

⊕
( i−1⊕

j=1

1
j!

· exp(−v) · τ⊗j
E |E

Ŝ

)

We then define F i(Ret

E
†
Cd,[d]

{v}) over the completions of Ed at the other d − 1 connected

components of Ed in a similar way, using the translated direct sum decompositions discussed
above.

Now observe that we have defined F i(Ret

E
†
Cd,[d]

{v}) over all of Ed. Thus, it remains to

extend the resulting vector bundle over Ed over Cd (in some sort of natural fashion). But
this is just a matter of elementary commutative algebra, which we review in Lemma 1.1
below. In fact, Lemma 1.1 will also show that there is a unique extension of this vector
bundle on Ed over Cd which is S-flat, coherent, and satisfies the property that any length
2 regular sequence of local sections of OCd

is also regular on this extension. Relative to
the application of Lemma 1.1, we remark that:

(1) All of the notation used in Lemma 1.1 is strictly internal to Lemma
1.1 and has nothing to do with the notation in the remainder of the
discussion of this §.

(2) Of course, in general, Cd need not be regular, but it suffices to prove
extendability in the universal case (e.g., the “EN → SN” of Chapter
IV, §4, for “N” taken to be d), in which case Cd is regular, and the
nodes of Cd (with the reduced induced scheme structure) are regular of
dimension dim(Cd) − 2.

This completes the definition of the S-flat coherent sheaf

F i(Ret

E
†
Cd,[d]

{v})

on Cd.
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Lemma 1.1. Let A be a regular local ring of dimension ≥ 2. Let B
def= A/(s, t) be a

quotient which is regular local ring of dimension dim(A) − 2. Let F be a vector bundle
on U

def= Spec(A)\Spec(B) ⊆ X
def= Spec(B). Then i∗F is a coherent sheaf on X with

the property that any A-regular sequence of length 2 in A is also (i∗F)-regular. Thus, in
particular, if dim(A) = 2, then i∗F is a vector bundle on X.

Proof. It is well-known that in this situation, i∗F is a coherent sheaf (cf., e.g., [SGA2],
p. 97, Proposition 3.2). As for the assertions concerning depth, we reason as follows: Let
a, b ∈ A be regular on A. Then b acts injectively on any localization of A/(a). Thus, the
long exact sequence obtained by applying the derived functors of i∗ to

0 −→ F a−→ F −→ F/a · F −→ 0

shows that a acts injectively on i∗F , and that we have an inclusion (i∗F)/a ↪→ i∗(F/a ·
F). On the other hand, F/a · F is just a vector bundle over some open subscheme of
Spec(A/(a)), so multiplication by b is injective on F/a · F , hence also on i∗(F/a · F), as
well as (i∗F)/a. This shows that a, b is regular on i∗F , as desired. If dim(A) = 2, then
this shows that i∗F has depth 2 as an A-module, hence (by the Auslander-Buchsbaum
formula – see, e.g., [Mats]) is a vector bundle. This completes the proof. ©

As remarked above, F i(Ret

E
†
Cd,[d]

{v}) has a filtration

0 ⊆ . . . ⊆ F j(Ret

E
†
Cd,[d]

{v}) ⊆ . . . ⊆ F i(Ret

E
†
Cd,[d]

{v})

(where 1 ≤ j ≤ i) whose subquotients admit natural inclusions

(F j+1/F j)(Ret

E
†
Cd,[d]

{v}) ⊆ 1
j!

· exp(−v) · τ⊗j
E |Cd

Moreover, if v1 ≤ v2, then we have a natural inclusion

F i(Ret

E
†
Cd,[d]

{v1}) ⊆ F i(Ret

E
†
Cd,[d]

{v2})

We denote the union of all of these sheaves (as v ranges over all elements of Q≥0 · log(q))
by

F i(Ret

E
†
Cd,[d]

{∞})
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We summarize the properties of these sheaves as follows:

Proposition 1.2. The quasi-coherent sheaf of OCd
-modules

Ret

E
†
Cd,[d]

{v} def=
⋃
i≥0

F i(Ret

E
†
Cd,[d]

{v})

comes equipped with an exhaustive filtration

F i(Ret

E
†
Cd,[d]

{v})

(for i ≥ 0) whose i-th member is an S-flat coherent sheaf (of generic rank i) on Cd.
Moreover, this quasi-coherent sheaf restricts (as a filtered object) to Ret

E
†
Cd,[d]

(as in Chapter

V, Theorem 3.1) away from the divisor at infinity. Finally, the natural morphisms

(F i+1/F i)(Ret

E
†
Cd,[d]

{v}) → 1
i!
· exp(−v) · OCd

⊗OS
τ⊗i
E

(if i ≥ 1) and

F 1(Ret

E
†
Cd,[d]

{v}) → OCd

arising from Chapter V, Theorem 3.1, are isomorphisms over Ed, i.e., away from the nodes
of Cd.

By pulling back these various objects from Cd to C∞,S and E∞,S , we obtain cor-

responding sheaves over C∞,S and E∞,S (cf. the construction of E
†
C∞,S ,[d], E

†
∞,[d] =

E
†
E∞,S ,[d] → E∞,S in Chapter V, §2). Naturally, if we are given different sequences vι at

the various connected components ι of the divisor at infinity of S, then we may adjust the
integral structure according to the sequence vι at ι, and thus obtain global objects suffixed
by “{v},” where v def= {vι}ι. (We leave the formal details to the reader.)

In particular, if L is a metrized line bundle on E∞,S of relative degree d and whose
curvatures are d-invariant (i.e., a metrized line bundle of the sort considered in Chapter
V, §2), then by taking global sections over E∞,S of
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L⊗OE∞,S
F i(Ret

E
†
∞,[d]

{v})

(for i ≥ 0) we obtain a natural metrized vector bundle (of rank d · i) with GL-action

(fS)∗(L|
E
†
∞,[d]

)<i{v, et} ( ⊇ (fS)∗(L|
E
†
∞,[d]

)<i )

on S∞.

Definition 1.3. In the following, we shall refer to these push-forwards as {v, et}-push
forwards.

§2. Compatibility with Base-Change

In this §, we study the push-forwards defined in §1 and show, in particular, that these
push-forwards are compatible with base-change if and only if they are compatible with
base-change “modulo p.” We will then show, in certain special cases, compatibility with
base-change modulo p in §4 below, and thus conclude (in §4) that (at least in these cases)
the various push-forwards defined in §1 are compatible with base-change.

In this §, we continue to use the notation of §1. Let us suppose that we are also given
an m-torsion point

η ∈ E∞,S(S∞)

(where m ≥ 1 is an integer) as in Chapter V, §1. Then, by pulling back the metrized
line bundles constructed in the universal case in Chapter V, §1, we obtain metrized line
bundles

Lst,η; Lev

st,η

on E∞,S . Let us take the metrized line bundle L (in the discussion at the end of §1) to be
Lst,η (respectively, Lev

st,η) if d is odd (respectively, even). Then, in this §, we would like to
study the {v, et}-push forwards

(fS)∗(L|
E
†
∞,[d]

)<j{v, et}
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(for j ≥ 1) on S∞. In particular, we would like to study the extent to which these push-
forwards are compatible with base-change, among bases Slog as in §1 (=as in Chapter V,
§2), i.e., bases such that the pull-back of divisor at infinity of (M1,0)Z is a Cartier divisor
on S and for which the q-parameter locally admits a d-th root.

First observe that over US
def= S − D, compatibility with base-change follows imme-

diately from elementary algebraic geometry (cf., e.g., [Harts], Chapter III, Corollary 12.9,
Theorem 12.11), since: (i) the sheaf Ret admits a filtration with subquotients which are
(locally on S) isomorphic to the structure sheaf (Proposition 1.2); (ii) the higher direct
image sheaves of the line bundle L|US

with respect to the morphism E|US
→ US vanish.

Thus, it suffices to localize S to a neighborhood of an arbitrary point of D. In the follow-
ing discussion, we will often carry out such localizations without further justification. In
particular, we may assume that “there is only one ι,” i.e., that D is irreducible.

Let us consider the line bundle L. Without loss of generality, we assume in the case
of d even that the q-parameter has a 2d-th root on S. (This may always be achieved
by replacing S by a finite, flat covering of S; since this covering will be flat, it will not
effect compatibility with base-change issues.) If d is even, then we let β ∈ E∞,S(S) be a
2d-torsion point as in Chapter IV, Lemma 5.4. Now, we let

M

be the metrized line bundle Lst (respectively, T ∗β Lev

st ) if d is odd (respectively, even). (Here,
“Tβ” is the automorphism of E∞,S given by translation by β.) Note that the curvature
of M is the same as that of L (cf. Chapter V, the discussion preceding Proposition 1.1,
for a computation of the curvature of L; Chapter IV, Lemma 5.4, for a computation of
the curvature of M). Moreover, it is clear from the definitions of L and M on E∞,S |US

(namely, both are obtained by translating a multiple of the divisor defined by the identity
element by some torsion point) that there exists an integer N ≥ 1 such that (after possibly
localizing S further) we obtain an isomorphism of metrized line bundles:

L⊗N ∼= M⊗N

In particular, it follows that we may write

L = M⊗Q

where Q is a metrized line bundle on E∞,S such that Q⊗N
is trivial. Note, moreover, that

M is represented by a line bundle on Cd in the usual sense (cf. Chapter IV, Lemma 5.4).
The point here (cf. the proof of Chapter IV, Theorem 5.8) is that we would like to reduce
compatibility with base-change assertions concerning the metrized line bundle L (which is
a delicate issue) to compatibility with base-change assertions for the “line bundle in the
usual sense M” (an issue which is well-known from elementary algebraic geometry).
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Thus, M is a line bundle in the usual sense on Cd. Let us assume (without loss of
generality) that the q-parameter on Ŝ admits an 2N · d-th root. Then it follows that there
exists a finite isogeny E′d → Ed (of degree N) whose kernel is isomorphic to μN . Moreover,
this isogeny compactifies to a diagram

E′d ⊆ C′d⏐⏐� ⏐⏐�
Ed ⊆ Cd

The purpose of introducing E′d is that the pull-back of the metrized line bundle Q to E′∞,S

is a line bundle in the usual sense. Indeed, to see this, one reasons as follows: First of
all, observe (from the general theory of abelian schemes) that the kernel of the pull-back
morphism on Picard groups induced by the isogeny E′∞,S |US

→ E∞,S |US
is the Cartier dual

of Ker(E′∞,S |US
→ E∞,S |US

) = μN . Thus, the kernel of the pull-back morphism is Z/NZ
(cf. the discussion in Chapter IV, §2, of the isogenies “E[n] → E → Ẽ” and line bundles
on Ẽ which become trivial when pulled back to E[n]). In other words, if one thinks of the
subscheme of N -torsion points of E∞,S |US

as μN × (Z/NZ), then this kernel is generated
by the line bundle corresponding to a divisor of the form τ − eE∞,S

, where eE∞,S
is the

identity element of E∞,S , and τ is an N -torsion point whose projection to Z/NZ generates
Z/NZ. In particular, this means that the pull-back of Q|US

to E′∞,S |US
is isomorphic to

the pull-back to E′∞,S |US
of the line bundle associated to a divisor of the form τ − eE∞,S

,
where τ ∈ μN (S) ⊆ E(S) ⊆ E∞,S(S). On the other hand, note that for such a τ , the
line bundle (in the usual sense) OCd

(τ − eCd
) already forms a metrized line bundle on

E∞,S whose curvature is zero. Thus, in summary, Q|E′∞,S
and OCd

(τ − eCd
)|E′∞,S

have
isomorphic restrictions to E′∞,S |US

and, moreover, both have curvature zero. In particular,
by Chapter IV, Proposition 4.3, it follows that these two metrized line bundles on E′∞,S

are isomorphic, i.e., that the metrized line bundle Q|E′∞,S
is represented by a line bundle

in the usual sense on C′d, as desired.

Thus, to summarize, we have L = M ⊗ Q, where M arises from a line bundle in
the usual sense on Cd; and Q|E′∞,S

arises from a line bundle in the usual sense on C′d. In
particular, we conclude that:

The metrized line bundle L|E′∞,S
arises from a line bundle P in the usual

sense on C′d. Moreover, the restriction of P to each to the irreducible
components of the special fiber of C′d is of degree N (since E′d → Ed is
of degree N).

Now fix an integer j ≥ 1, and let

F def= F j(Ret

E
†
Cd,[d]

{v})|C′
d
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Thus, F is an S-flat coherent sheaf on C′d whose restriction to E′d is a vector bundle of
rank j which admits a filtration whose subquotients are isomorphic to OE′

d
. Moreover, the

push-forwards

(fS)∗(L|
E
†
∞,[d]

)<j{v, et}

that we are interested in are simply the μN -invariant portions of

f ′∗(F ⊗OC′
d

P)

(where, in the following, we shall write f ′∗ for the push-forwards to S of objects on C′d or
E′d) with respect to the evident natural μN -action. Thus, since the group scheme μN is
of multiplicative type, hence reductive (so the operation of “taking the μN -invariant part”
commutes with base-change), it follows that:

The issue of the compatibility of the push-forward

(fS)∗(L|
E
†
∞,[d]

)<j{v, et}

with base-change may be reduced to the issue of the compatibility of the
push-forward f ′∗(F ⊗OC′

d

P) = f ′∗{(F ⊗OC′
d

P)|E′
d
} with base-change.

At this point, before we continue to study compatibility with base-change issues further,
we pause to note the following important lemma:

Lemma 2.1. The metrized vector bundle

(fS)∗(L|
E
†
∞,[d]

)<j{v, et}

(which a priori – cf. Chapter IV, Definition 5.2 – is just a quasi-coherent sheaf on S∞)
is, in fact, a coherent sheaf on S∞. If, moreover, the classifying morphism S → (M1,0)Z
is flat, then this coherent sheaf is, in fact, a vector bundle on S∞.

Proof. Indeed, the above discussion shows that this metrized vector bundle is just the
μN -invariant portion of the push-forward

f ′∗(F ⊗OC′
d

P)
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On the other hand, this latter push-forward is clearly a coherent sheaf of OS∞-modules.
Thus, the metrized vector bundle (fS)∗(L|

E
†
∞,[d]

)<j{v, et} is, in fact, a coherent sheaf of

OS∞-modules, as desired.

If the classifying morphism is flat, then formation of push-forwards is compatible with
base-change, so we reduce immediately to the “universal case” – i.e., where S is, say, of
the form Spec(O[[q

1
2N·d ]]), and O is the Zariski localization of the ring of integers of a

number field. In this case, S∞ is a projective limit of regular schemes of dimension 2, so
we conclude from from Lemma 1.1 that “any metrized vector bundle on S∞ which is a
coherent sheaf of OS∞-modules is, in fact, a vector bundle on S∞,” as desired. ©

Next, we consider base-change issues. The following result follows from elementary
homological algebra:

Lemma 2.2. Let A be a quasi-coherent OS-algebra. Then we have an exact sequence:

f ′∗{(F ⊗OC′
d

P)|E′
d
} ⊗OS

A → f ′∗{(F ⊗OC′
d

P)|E′
d
⊗OS

A}

→ TorOS
1 (R1f ′∗{(F ⊗OC′

d

P)|E′
d
},A) → 0

Moreover, when j = 1, i.e., F = OC′
d
, we have R1f ′∗(F ⊗OC′

d

P) = 0, and f ′∗(F ⊗OC′
d

P) ⊗OS
A = f ′∗(F ⊗OC′

d

P ⊗OS
A).

Proof. Indeed, the exact sequence follows by considering the usual spectral sequence
relating H∗(C·) ⊗OS

A and H∗(C· ⊗OS
A), where C· is a complex of flat, coherent OS-

modules. In this case, since the push-forward functor f ′∗ has cohomological dimension ≤ 1,
the complex C· may, in fact, be taken to consist of just two terms, i.e., C· may be written
C0 → C1. The case j = 1 follows by considering the fact that P is a line bundle whose
restriction to each of the irreducible components of the special fiber of C′d is of degree
N ≥ 1, and applying [Harts], Chapter III, Corollary 12.9, Theorem 12.11. ©

Now let us suppose that S is the spectrum of a regular local ring of dimension 2.
Suppose that α, β are a system of regular parameters for this regular local ring, and that
V (β) ⊆ S is set-theoretically equal to the divisor at infinity D ⊆ S. Suppose, moreover,
that we know that the morphism

f ′∗{(F ⊗OC′
d

P)|E′
d
} ⊗OS

A → f ′∗{(F ⊗OC′
d

P)|E′
d
⊗OS

A}

is surjective when A is taken to be OS/(α). Then I claim that it follows that this morphism
is surjective for all A on which β acts injectively. Indeed, our assumption concerning the
case when A = OS/(α) implies that
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TorOS
1 (R1f ′∗{(F ⊗OC′

d

P)|E′
d
},OS/(α)) = 0

i.e., that α acts injectively on the coherent sheaf B def= R1f ′∗{(F ⊗OC′
d

P)|E′
d
}. Note that

although B itself might not be finitely generated over OS , it may be written as a direct limit
of finitely generated OS-submodules B′ ⊆ B. Note that since α acts injectively on B, it
also acts injectively on B′. Similarly, since B is set-theoretically supported on D, it follows
that B′ is also set-theoretically supported on D. But this implies that the OS-module B′
has depth ≥ 1, hence (by the “Auslander-Buchsbaum Formula” – cf., e.g., [Mats]) that the
OS-module B has cohomological dimension ≤ 1. Since, moreover, B′ is (set-theoretically)
supported on D, we thus conclude that there exists an exact sequence

0 −→ Or
S

φ−→ Or
S −→ B′ −→ 0

(where r is an integer). Moreover, since the zero locus of det(φ) ∈ OS is set-theoretically
equal to D, we conclude that there exists an OS-linear morphism ψ : Or

S → Or
S such

that ψ ◦ φ = βa, for some integer a ≥ 0. In particular, we conclude that the above exact
sequence remains exact after tensoring with any A on which β acts injectively. But this
implies that for such an A, we have TorOS

1 (B′,A) = 0, hence (since Tor commutes with
filtered direct limits) that TorOS

1 (B,A) = 0, as claimed.

In fact, in our situation, instead of being given that the entire morphism

f ′∗{(F ⊗OC′
d

P)|E′
d
} ⊗OS

A → f ′∗{(F ⊗OC′
d

P)|E′
d
⊗OS

A}

is surjective when A = O/(α), we will instead just be given that its μN -invariant portion
is surjective when A = O/(α). But since μN is of multiplicative type, it is clear that the
argument of the preceding paragraph then allows one to conclude the surjectivity of the
μN -invariant portion of this morphism for any A on which β acts injectively. In other
words, we have proven the following:

Lemma 2.3. Suppose that S is the spectrum of a regular local ring of dimension 2.
Suppose that α, β are a system of regular parameters for this regular local ring, and that
V (β) ⊆ S is set-theoretically equal to the divisor at infinity D ⊆ S. Suppose, moreover,
that we know that the morphism

f ′∗{(F ⊗OC′
d

P)|E′
d
} ⊗OS

A → f ′∗{(F ⊗OC′
d

P)|E′
d
⊗OS

A}

is surjective on μN -invariant parts when A is taken to be OS/(α). Then it follows that
this morphism is surjective on μN -invariant parts for all A on which β acts injectively.

205



§3. The Comparison Isomorphism in Characteristic Zero

The purpose of the present § is to show that for appropriate choices of the metrized
line bundle L (cf. Chapter V, §1), certain slightly modified versions of the evaluation maps
of Chapter V, Propositions 2.2, 2.3, are isomorphisms in characteristic zero.

In this §, we use the notation of §1. Let us suppose that we are also given an m-torsion
point

η ∈ E∞,S(S∞)

(where m ≥ 1 is an integer) as in Chapter V, §1. Then, by pulling back the metrized
line bundles constructed in the universal case in Chapter V, §1, we obtain metrized line
bundles

Lst,η; Lev

st,η

on E∞,S . We are now ready to state and prove the following result:

Theorem 3.1. (Comparison Isomorphism in Characteristic Zero) Let d,m ≥ 1 be
integers such that m does not divide d. Suppose that Slog is a fine noetherian log scheme,
and let

C log → Slog

be a log elliptic curve over Slog such that the “divisor at infinity” D ⊆ S (i.e., the pull-
back of the divisor at infinity of (M1,0)Z via the classifying morphism S → (M1,0)Z) is a
Cartier divisor on S. Also, let us assume that étale locally on the completion of S along
D, the pull-back of the Tate parameter q to this completion admits a d-th root, and that
the classifying morphism S → (M1,0)Z associated to C log → Slog is flat in a neighborhood
of D. (Note that this flatness automatically holds whenever S is of characteristic zero.)
Suppose, moreover, we are given a torsion point

η ∈ E∞,S(S∞)

of order precisely m which (according to the discussion preceding Chapter V, Proposition
1.1) defines line bundles Lst,η, L

ev

st,η. If d is odd (respectively, even), then let L def= Lst,η

(respectively, L def= Lev

st,η). Then:

(1) For any collection v = {vι}ι of elements of Q≥0 · log(q)
⋃∞ (one for

each connected component ι of the divisor at infinity D), the evalua-
tion map of Chapter V, Proposition 2.2 (for “α” taken to be 0) factors
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through the metrized vector bundle (fS)∗(L|
E
†
∞,[d]

)<d{v, et} of §1 to de-

fine a natural morphism

Ξ{v, et} : (fS)∗(L|
E
†
∞,[d]

)<d{v, et} → (fS)∗(L|
(dE

†
∞)

)

(2) If vι = ∞ for all ι, then

Ξ{v, et} ⊗Q

is an isomorphism. Moreover, at each ι, there exists a unique sequence
aι = {(aι)0, . . . , (aι)d−1} of elements of Q≥0 ·log(q) such that the natural
inclusions

F j((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j−1, et}) ⊆ F j((fS)∗(L|
E
†
∞,[d]

)<d{∞, et})

are all equalities and the natural projections

(F j/F j−1)((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j−1, et}) −→

1
(j − 1)!

· exp(−(aι)j−1) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j−1
E

(where j = 1, . . . , d) are surjective (hence bijective).

(3) Finally, these sequences aι satisfy the following condition: for each
connected component ι, there is an Xι ∈ {I, II, III} such that

(aι)j−1 =
1
d
· cj

where cj is as in Chapter V, §4, for Case Xι.

Proof. First, let us observe that since the classifying morphism S → (M1,0)Z is flat in
a neighborhood of infinity, the various push-forwards (fS)∗ (along with their filtrations)
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are compatible with base-change (cf. Lemma 2.2). (Note that in characteristic zero, the
classifying morphism factors through (M1,0)Q, which is regular of dimension one. Thus,
flatness follows from the assumption that the q-parameter is a non-zero divisor, i.e., that
the closed subscheme D is a Cartier divisor on S.) Thus, it suffices to prove Theorem
3.1 in the “universal case” – for instance, in the case of S

def= T , where T → B is any
“nice covering,” as in Chapter V, Proposition 1.2, such that at each ι, the corresponding
q-parameter has a d-th root in OT .

Next, note that to see that the evaluation map of Chapter V, Proposition 2.2, factors
as claimed in (1), it suffices to prove that it factors in characteristic zero. Indeed, once it
factors in characteristic zero, the fact that it also factors away from the divisor at infinity
(cf. Proposition 1.2; the integrality statement at the end of Chapter V, Theorem 3.1)
implies – since S = T is finite, flat over (M1,0)Z, which is regular – that it factors over
all of S = T . Similarly, the natural inclusions of (2) are equalities if and only if they are
equalities in characteristic zero. Indeed, if they are equalities in characteristic zero, then
both sides are vector bundles (cf. Lemma 2.1) which are tautologically equal away from
the divisor at infinity.

Thus, in summary, except for the surjectivity of the natural projections in (2), it
suffices to prove Theorem 3.1 in characteristic zero. In particular, for the remainder of the
proof (except where specified otherwise),

We assume that S is T ⊗Q, where T is as above.

Also, to simplify the discussion, we assume that S is connected. Thus, the base S is a
smooth, proper curve over a field of characteristic zero.

Now we divide the proof into parts:

Local Assertions:

Let us first show that the evaluation map factors as stated in (1) for any choice of v,
and that the natural projections of (2)

(F j/F j−1)((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j−1, et}) −→

1
(j − 1)!

· exp(−(aι)j−1) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j−1
E

are surjective for the special choice of v referred in (2) and (3).

Since these are local issues at infinity, we assume (just for this “Local Assertions”
part of the proof) that

S = Spec(A)
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where A = O[[q
1

N·d ]] (where N
def= 2m · d), and O is a Zariski localization of the ring of

integers of a number field. Let KH = Z/dZ ⊆ dE be the subgroup corresponding to the
d-th root q

1
d of q. Thus, we have a finite étale isogeny

Ed → Ed/KH = EH

One checks easily (using Chapter IV, Lemma 5.4 – cf. the argument in the “Alternate
Proof of Theorem 6.2” in Chapter V, §6) that L descends to a metrized line bundle LH of
relative degree 1 on E∞H ,S . Thus, there exists a Lagrangian subgroup (cf. the discussion
of such subgroups in Chapter IV, §1)

H ⊆ GL

Note that the {v, et}-push forwards, as well as the evaluation maps Ξ{v, et} all have “sub-
script H versions” (obtained by taking “H-invariants” of the original versions discussed
above). We leave the routine details to the reader.

Next, let us note that dE
†
∞H ⊆ E

†
∞H ,[d] lies inside the canonical section derived from

κ. Indeed, this follows from the facts that:

(i) the canonical section is a group homomorphism (Chapter III, Theo-
rem 2.1);

(ii) WE has no torsion since our base S is Z-flat; and

(iii) the image of dE
†
∞H in E∞H ,S lies in the identity component of the

special fiber of E∞H ,S .

Since the modifications in integral structure that one performs in order to construct the
{v, et}-push-forward (for any v) are all done using the splittings defined by the canonical
section (derived from κ), it is a tautology that all sections of the {v, et}-push-forward which
have “denominators” relative to the usual push-forward vanish (i.e., modulo the sections
which do not have denominators relative to the usual push-forward) when restricted to

the canonical section, hence when restricted to dE
†
∞H . Thus, it follows that the evaluation

map of Chapter V, Proposition 2.2, factors as claimed in (1) (for any v).

Next, let us observe that “metrically speaking” LH is the same as the metrized line
bundle OE∞H,S

([eE∞H ,S
]). More precisely, we have:

L⊗m·d
H

∼= OE∞H ,S
(m · d · [eE∞H ,S

])

Indeed, if we forget about metrics, this follows from the linear equivalence m(d · [η]) ∼
m · d · [e] on E∞,S |US

pushed forward from E∞,S to E∞H ,S . Moreover, it follows from the
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computation of the curvature of L (in the discussion preceding Chapter V, Proposition
1.1) that both sides have the same curvature. Thus, by Chapter IV, Proposition 4.3, it
follows that these two metrized line bundles are isomorphic. (Indeed, it is easy to check
that the constant “C” in Chapter IV, Proposition 4.3, may be taken to be zero in this
case).

In particular, it follows that LH differs from OE∞H,S
([eE∞H ,S

]) by a metrized line
bundle on E∞H ,S whose (m · d)-th power is trivial. But, in the language of Chapter V, §4,
if we think of EH here as the curve “Ẽ” of Chapter V, §4, then this amounts to saying
that LH is the same as the “standard line bundle L̃

Ẽ
” of Chapter V, §4, twisted by some

appropriate character χL of order “n” where we take the “n” of Chapter V, §4, to be
N = 2m · d, relative to the notation used here. This character χL falls into one of the
three “Cases” treated in Chapter V, §4. We take Xι ∈ {I, II, III} to be the “Case” that
χL falls under (cf. Chapter V, Theorem 4.6).

Now let

(aι)j−1
def=

1
d
· cj · log(q)

(where cj is as in Chapter V, §4), and apply Chapter V, Theorem 4.6. Note that the “q”
of Chapter V, §4, which we write q

Ch. V,§4, is such that qN
Ch. V,§4 is the q-invariant of Ẽ,

which corresponds to EH in the present discussion. Since the q-invariant qEH
of EH is

equal to q
1
d , we thus see that

q
1
d = qEH

= qN
Ch. V,§4

Thus, the various adjustments of integral structure used to form the {v, et}-push-forward
are of the form

exp((aι)j−1) = q
1
d ·cj = q

cj

EH
= q

N ·cj

Ch. V,§4

Note, moreover, that

cj = Maxj0≤j(cj0)

(where j0 ranges over all integers ≤ j which are admissible as “j0’s” for Chapter V,
Theorem 4.6, and we define the “Max” of the empty set to be 0). Note that Chapter
V, Theorem 4.6, addresses the case of “torsorial degree” (cf. Chapter III, Definition 2.2)
< j and states that in this case, there exist generators of the portion of the “usual” push-
forward (i.e., without the {vι}) corresponding to torsorial degrees j0 − 1, . . . , j − 1 which
vanish modulo exp((aι)j0−1) = q

1
d ·cj when restricted to the canonical section derived from

κ over (EH)
Ŝ
. Moreover, if j0 is the largest “admissible j0” (for Chapter V, Theorem 4.6)
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which is ≤ j, then exp((aι)j′) = exp((aι)j0−1), for all j′ ∈ {j0 − 1, . . . , j − 1}. Thus, if
we divide these generators by exp((aι)j0−1), we see that we get integral sections of the
(aι)j−1-push-forward. In particular, we see that for this choice of (aι)j−1, the natural
projections

(F j/F j−1)((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j−1, et}) −→

1
(j − 1)!

· exp(−(aι)j−1) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j−1
E

are surjective, as desired. This completes the proof of the local assertions.

Reduction to the Computation of Degrees:

Let us now return to our global, universal, characteristic zero S.

Next, let us observe that, by Chapter V, Theorems 5.6 and 6.2, it follows from the
fact that m does not divide d (so d · η �= 0) that in the present universal situation, the
evaluation map of Chapter V, Proposition 2.2, is an isomorphism over the generic point
of S. Thus, now that we have shown that the evaluation map factors as stated, to show
that Ξ{v, et} is an isomorphism over all of S, it will suffice to compute the degrees of the
metrized vector bundles (of rank d2) on both sides, and show that:

deg(domain) ≥ deg(range)

Note, moreover, that:

The surjectivity assertion of (2) (proven above) is necessary in order to
bound from below the degree of the {v, et}-push-forward (for v = ∞) by
the sum of the degrees of the various exp(−(aι)j−1) · (fS)∗(L|E∞,S

)⊗OS

τ⊗j−1
E .

It turns out that the computation of the degree differs quite substantially, depending on
whether d is odd or even. Thus, in the following we carry out the computations in these
two cases separately.

Computation of the Degree in the Odd Case:

To complete the proof of Theorem 3.1 for d odd, it suffices (as noted above) to show
that in the situation discussed above, the degree of the domain of Ξ{v, et} is ≥ the degree
of the range. Let us first observe that Chapter V, Proposition 1.2, implies that:

The degree of the range of Ξ{v, et} is equal to 0.
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Thus, it remains to show that the degree of the {v, et}-push-forward (for v = ∞) is ≥ 0.
First, let us note that the surjectivity assertion already proven implies that:

deg(v−push − forward) − deg(usual push − forward) ≥ d ·
∑

ι

d−1∑
j=0

(aι)j

=
∑

ι

d∑
j=1

cj(Case Xι)

=
1
24

d(d2 − 1)

(in log(q) units), where:

(1) In the first inequality, the extra factor of d out in front arises from the
fact that the push-forward of the metrized line bundle L on E∞,S has
rank d.

(2) In the last equality, we apply Chapter V, Lemma 4.2.

On the other hand, the usual push-forward admits a filtration (by torsorial degree) whose
subquotients are τ⊗j

E ⊗OS
(fS)∗(L|E∞,S

), for j = 0, . . . , d − 1. Since the line bundle τE on
S has degree (in log(q) units) given by − 1

12 (cf. the proof of Chapter IV, Theorem 5.8),
we thus obtain that the degree of the usual push-forward is given by:

− d

12
· (

d−1∑
j=0

j) + d · deg((fS)∗(L|E∞,S
)) = − 1

24
d(d2 − 1)

(cf. the Remark following Chapter V, Proposition 1.1). Thus, putting everything together,
we obtain that the {v, et}-push-forward has degree ≥ 0, as desired.

This completes the proof of the fact that Ξ{v, et} is an isomorphism for v = ∞. It
also shows that the natural inclusions of (2)

F j((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j−1}) ⊆ F j((fS)∗(L|
E
†
∞,[d]

)<d{∞})

are all equalities (for if any one of them were not an inequality, it would follow that the
degree of the domain of Ξ{∞} is > the degree of the range, which is absurd). (Note that
here we use the fact that the function j �→ (aι)j is “monotone increasing” (i.e., preserves
the relation “≤”).) This completes the proof of Theorem 3.1, for d odd.
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Computation of the Degree in the Even Case:

In the even case, the computations become somewhat more complicated. First, let us
note that by Chapter V, Proposition 1.2, we have:

deg(range) = −d
∑

ι

φ1(−d · ηι +
1
2
)

= −d
∑

ι

{φ1(−d · ηι +
1
2
) − φ1(−d · ηι)}

where we note that:

(1) The intersection number of Chapter V, Proposition 1.2, must be mul-
tiplied by d2, since we have d2 torsion points annihilated by d.

(2) In the second line, the sum over all ι of the second term is zero, since
m does not divide d – cf. the (proof of the) odd part of Chapter V,
Proposition 1.2.

Next, observe that for |θ| ≤ 1
2 , the function θ �→ φ1(θ + 1

2 ) − φ1(θ) is linear, except at
0 and 1

2 (cf. Chapter IV, Corollary 4.5), and takes the value − 1
8 (respectively, 1

8 ) at
θ = 0 (respectively, θ = 1

2 ) – cf. Chapter IV, Proposition 4.4. It is easy to see that these
properties determine this function uniquely, namely:

φ1(θ +
1
2
) − φ1(θ) =

1
2
|θ| − 1

8

for |θ| ≤ 1
2 .

On the other hand, we have

deg(domain) ≥ − 1
24

d(d2 − 1) +
∑

ι

d∑
j=1

cj(Case Xι)

= − 1
24

d(d2 − 1) +
∑

ι

d−1∑
j=1

cj(Case Xι) +
∑

ι

cd(Case Xι)

= − 1
24

d(d2 − 1) +
1
24

(d − 1)((d − 1)2 − 1) +
∑

ι

cd(Case Xι)

=
1
24

d(d − 1){−(d + 1) + d − 2} +
∑

ι

cd(Case Xι)

= −1
8
d(d − 1) +

∑
ι

cd(Case Xι)
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where:

(1) The first line follows by the same general reasoning as in the odd case.

(2) The third line follows from the computation of the sum of the cj ’s in
the odd case, applied to the odd number d − 1.

Thus, to summarize, we would like to prove that

−1
2
k(k − 1

2
) +
∑

ι

c2k(Case Xι) ≥ −d
∑

ι

{φ1(−d · ηι +
1
2
) − φ1(−d · ηι)}

where we set k
def= d

2 .

Now, for each ι, we would like to define a number iι, as follows. If Xι = I (i.e., we
are in Case I at ι), then let

iι
def= m · d = m

Ch. V,§4

(i.e., “m · d” in the notation of the present discussion corresponds to “m” in the notation
of Chapter V, §4 (= m

Ch. V,§4) – cf. the discussion of the “Local Assertions” part of the
proof). If Xι = II, then let

iι
def= 0

If Xι = III, then let

iι
def= |iχ|

(where |iχ| < mCh. V,§4 is as in the discussion of Case III in Chapter V, §4). Then let us
observe that it follows immediately from the explicit formulas for cd(Case Xι) in Chapter
V, §4, that we have

cd(Case Xι) =
1
2
k2 − 1

2
k · iι

m
Ch. V,§4

=
1
2
k(k − iι

m
Ch. V,§4

)

(where we use here the fact that d = 2k is even). Thus, we see that the left-hand side of
the inequality that we would like to show may be written as follows:

−1
2
k(k−1

2
)+
∑

ι

1
2
k(k− iι

m
Ch. V,§4

) =
∑

ι

1
2
k(

1
2
− iι

m
Ch. V,§4

) = −
∑

ι

1
8
d(2

iι
m

Ch. V,§4
−1)
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(where we note that in our conventions, the “sums” over ι are “to be in log(q) units,” hence
amount, in fact, to averages; thus, a sum over ι of a constant C is equal to the constant C
itself). Thus, by dividing by −d, we see that it suffices to show that

∑
ι

1
8
(

2iι
m

Ch. V,§4
− 1) =

∑
ι

(
1
2
|θι| −

1
8
)

where θι is the unique rational number of absolute value ≤ 1
2 that defines the same element

as −d · ηι in S1
ι . In particular, it suffices to verify that

1
2

iι
m

Ch. V,§4
= |θι|

for each ι. But if one unravels the definitions, it is easy to see that this is essentially
a tautology: Indeed, it follows from the even part of Chapter IV, Lemma 5.4, that the
character χL of Chapter V, §4, is precisely that determined by the torsion point −d ·ηι + 1

2
of S1

ι , i.e.,

χL ←→ −d · ηι +
1
2

On the other hand, it follows from the definitions of Chapter V, §4, that ± iι

2m
Ch. V,§4

is

precisely the “coordinate” on S1
ι corresponding to the character χM, i.e.,

χM ←→ ± iι
2m

Ch. V,§4

Moreover, the character χM is the result of shifting the character χL by the character
defined by 1

2 :

χM ⊗ χL
−1 ←→ 1

2

Thus, putting everything together, the two “1
2 ’s” cancel, and we see that the rational

number iι

2m
Ch. V,§4

(≤ 1
2 ) defines the same element (up to sign) as −d · ηι in S1

ι , hence is

equal to |θι|, as desired.

This completes the proof of the fact that Ξ[∞] is an isomorphism in the case of d even.
The fact that the natural inclusions of Theorem 3.1, (2), are, in fact, equalities follows by
the same argument as in the odd case. Thus, the proof of Theorem 3.1 is complete. ©

Remark. One may regard the computation of the sequences aι in Theorem 3.1, (2), (3), such
that the natural inclusions and natural projections of (2) are surjective as a computation
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of the analytic torsion of the {v, et}-push forwards (i.e., the push-forwards equipped with
the new integral structure/metric defined at the beginning of this §). This point of view is
very much in line with what we will do in Chapter VII, Chapter VIII, where we compute
analogous analytic torsion-type quantities at the archimedean primes of a number field.

§4. The Comparison Isomorphism in Mixed Characteristic

In this §, we prove the Comparison Isomorphism in Mixed Characteristic. Put another
way, we show in this § that the characteristic zero isomorphism of §3, Theorem 3.1, (2),
preserves certain natural integral structures (at all finite primes) on both sides.

In this §, we shall continue to use the notations of §3. The following result is the main
result of this Chapter:

Theorem 4.1. (Comparison Isomorphism in Mixed Characteristic) Let d,m ≥ 1
be integers such that m does not divide d. Suppose that Slog is a fine noetherian log scheme,
and let

C log → Slog

be a log elliptic curve over Slog such that the “divisor at infinity” D ⊆ S (i.e., the pull-
back of the divisor at infinity of (M1,0)Z via the classifying morphism S → (M1,0)Z) is a
Cartier divisor on S. Also, let us assume that étale locally on the completion of S along
D, the pull-back of the Tate parameter q to this completion admits a d-th root, and that
we are given a torsion point

η ∈ E∞,S(S∞)

of order precisely m which defines line bundles Lst,η, L
ev

st,η (cf. Chapter V, §1). If d is odd

(respectively, even), then let L def= Lst,η (respectively, L def= Lev

st,η). Then:

(1) (Compatibility with Base-Change) For any collection v = {vι}ι

of elements of Q≥0 · log(q)
⋃∞ (one for each connected component ι of

the divisor at infinity D) such that for each ι, vι ≥ (aι)d−1 (notation of
Theorem 3.1, (3)), the formation of the push-forward

(fS)∗(L|
E
†
∞,[d]

)<d{v, et}
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(along with its filtration) commutes with base-change (among bases Slog

satisfying the hypotheses given above).

(2) (Zero Locus of the Determinant) Assume that S is Z-flat. If
vι = ∞ for all ι, then the scheme-theoretic zero locus of det(Ξ{v, et}),
i.e., the determinant of the morphism

Ξ{v, et} : (fS)∗(L|
E
†
∞,[d]

)<d{v, et} → (fS)∗(L|
(dE

†
∞)

)

of Theorem 3.1, (1), is given by the divisor

d · [η
⋂

(dE)]

(where dE is the kernel of multiplication by d on Ed). In fact, the divisor
of poles of the inverse morphism to Ξ{v, et} is contained in the divisor
[η
⋂

(dE)].

(3) (Analytic Torsion Properties) For each ι, let us write

aι = {(aι)0, . . . , (aι)d−1}

for the sequence of elements of Q≥0 · log(q) discussed in Theorem 3.1,
(2), (3). Then the natural inclusions

F j+1((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j , et}) ⊆ F j+1((fS)∗(L|
E
†
∞,[d]

)<d{∞, et})

are all equalities and the natural projections

(F j+1/F j)((fS)∗(L|
E
†
∞,[d]

)<d{(aι)j , et}) −→ 1
j!

· exp(−(aι)j) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j
E

(where j = 0, . . . , d− 1) are bijective. Moreover, the sections of L|
E
†
∞,[d]

that realize these bijections have q-expansions in a neighborhood of in-
finity that are given explicitly in Chapter V, Theorem 4.8.
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Remark. Relative to the bound on the poles of the inverse morphism to Ξ{v, et} (i.e.,
Theorem 4.1, (2)), we remark that these denominators tend to be very small. Indeed,
typically an intersection between torsion points will look like the zero locus of some 1−ω,
where ω is a root of unity. In fact, by taking m to have at least two prime factors that do
not divide d, it is easy to see that one can arrange that η

⋂
(dE) = ∅.

Remark. Note that compatibility with base-change is extremely important for applications.
For instance, base-change from (M1,0)Z to a point of (M1,0)Z valued in the ring of integers
of a number field is a typical case of a situation where one must use the “full power” of
compatibility with base-change.

Remark. The poles “exp(−(aι)j)” appearing in Theorem 4.1, (3), are clearly of fundamen-
tal importance in Theorems 3.1 and 4.1, and indeed, of fundamental importance to this
entire paper. We shall refer to these poles as Gaussian poles, since they grow roughly like
a Gaussian (i.e., (aι)j is roughly quadratic in j).

Proof. First, let us observe that once one proves the base-change assertion (1), assertions
(2) and (3) will follow as soon as they have been proven in the “universal case” – i.e., say,
for S regular of dimension 2 such that the classifying morphism S → (M1,0)Z is flat. But
in this “universal case,” assertion (3) already follows from Theorem 3.1, (2). Also, in the
“universal case,” assertion (2) follows from Theorem 3.1, (2), and Chapter V, Theorem
6.2. Indeed, both the domain and range of Ξ{v, et} are vector bundles of the same rank
over a two-dimensional regular base (cf. Lemma 2.1), so the scheme-theoretic zero locus
of the determinant of Ξ{v, et} is known as soon as it is known at the height 1 primes. But
at the height 1 primes, the zero locus of det(Ξ{v, et}) is known by Theorem 3.1, (2), and
Chapter V, Theorem 6.2. Thus, in summary, to complete the proof of Theorem 4.1, it
suffices to prove assertion (1) under the hypothesis that assertions (2) and (3) are known
in the “universal case.”

On the other hand, by what we did in §2, we know that assertion (1) holds away
from the divisor at infinity. Thus, by Lemma 2.3, it suffices to prove compatibility with
base-change in the special case where S is regular of dimension 2, and the classifying
morphism S → (M1,0)Z is finite and flat (cf. the theory of [KM], Chapter 5). Let O be
the normalization of Z in S. Then we may even assume that the fibers of S → Spec(O)
are geometrically reduced, and even smooth near infinity. Indeed, by flatness over (M1,0)Z,
it suffices to check this near infinity, where S may be taken to be such that its completion
at infinity is the spectrum of

O[[q
1

M ]]

for some positive integer M . In fact, Lemma 2.3 tells us that it suffices to prove compati-
bility with base-change for the particular base-change
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S ×O Spec(O/p) → S

where p is an arbitrary maximal prime of O. In the following, we will denote the result of
base-changing objects via O → k

def= O/p by means of a subscript k.

Next, let us observe that the morphism “f ′∗(F⊗OC′
d

P)⊗OS
A → f ′∗(F⊗OC′

d

P⊗OS
A)”

studied in §2 is always injective. Indeed, this follows from the fact that both sides inject
into their restrictions to US = S\D, where they are equal. Thus, compatibility with base-
change issues amount to the surjectivity of the “μN -invariant part of” (terminology of §2)
this morphism.

Thus, in summary, it suffices to show that the morphism

(fS)∗(L|
E
†
∞,[d]

)<j{v, et} ⊗O k → (fS)∗(L|
E
†
∞,[d]

⊗O k)<j{v, et}

is surjective for all j = 1, . . . , d. Let us write Rj (respectively, Dj ; Ij) for the range
(respectively, domain; image) of this morphism. Note that Rj , Dj , and Ij are all vector
bundles on Sk. Indeed, this is clear away from infinity; near infinity, it follows from the
fact that Sk is smooth over k near infinity. Thus, we have an inclusion

Ij ⊆ Rj

of vector bundles on Sk which is an equality away from infinity. We wish to show that this
inclusion is an equality over all of Sk.

Now let us suppose that:

Id = Rd

Then I claim that it follows that Ij = Rj for all j = 1, . . . , d. Indeed, this follows by
considering degrees, as in the proof of Theorem 3.1. That is to say, the fact that the natural
projections of (3) are surjective (over S), combined with the fact that the push-forward
(fS)∗(L|E∞,S

) commutes with base-change (cf. the last part of Lemma 2.2), implies that
if there were a single j such that Ij �= Rj = F j(Rd), then summing up over the various
(F j/F j−1)(Rd)’s and Ij/Ij−1’s, we obtain that
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deg(Rd) >
∑

ι

d∑
j=1

{d · (aι)j−1 + deg((fS)∗(L|E∞,S
⊗OS

τ⊗j−1
E ))}

= deg((fS)∗(L|
E
†
∞,[d]

)<j{v, et} ⊗O Q)

= deg((fS)∗(L|
E
†
∞,[d]

)<j{v, et} ⊗O k)

= deg(Dd)
= deg(Rd)

(where the first equality follows from Theorem 3.1, (2); the second equality follows from
the fact that the degree of a vector bundle on S is locally constant over Spec(O); the
third equality follows from the definition of Dd; and the fourth equality follows from the
assumption Id = Rd). Thus, we get a contradiction; this completes the proof of the claim.

Thus, it suffices to prove that

Id = Rd

Since this assertion is local at infinity, we will assume in the rest of the proof that

S = Spec(O[[q
1

M ]])

for some positive integer M . To conclude that Id = Rd, we would like to use the fact
that Ξ{v, et} is an isomorphism over S (by (2) in the “universal case”), so long as η does
not intersect dE. Now of course, in the case under consideration η might intersect dE.
Note, however, that if we modify η by some torsion point ηδ ∈ Ed(S) whose restriction to
the special fiber of Ed lies in the same connected component as that of the identity, then
this problem can be avoided. Note that (after possibly enlarging O) such an ηδ always
exists (since we have localized near infinity). Moreover, we may even assume that ηδ is
such that η′

def= η + ηδ does not intersect dE. Next, note that, by (2) in the “universal
case,” the “Ξ{v, et}” corresponding to such an η′ is an isomorphism. Since in fact, we are
interested in the situation with the original η, we observe that (by translating by −ηδ) we
can interpret the fact that we get an isomorphism when η is replaced by η′ as saying that
the evaluation map

(fS)∗(L|
E
†
∞,[d]

)<d{v, et} → (fS)∗(L|
(−η

†
δ
+dE

†
∞)

)

(where η
†
δ is the natural lifting of ηδ to E

†
∞,[d]) is an isomorphism. Tensoring with k, we

thus obtain that the evaluation map
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(fS)∗(L|
E
†
∞,[d]

)<d{v, et} ⊗O k = Dd → (fS)∗(L|
(−η

†
δ
+dE

†
∞)

⊗O k)

is an isomorphism (since push-forwards for finite morphisms always commute with base-
change). But this morphism clearly factors through Rd (since sections of

(L ⊗OE∞,S
Ret

E
†
∞,[d]

{v}) ⊗O k

over E∞,S ⊗O k can always be restricted to (−η
†
δ + dE

†
∞) ⊗O k). In other words, the

morphism Dd → Rd is bijective, so Id = Rd, as desired. This completes the proof of
Theorem 4.1. ©

Remark. In fact, compatibility of base-change, i.e., Theorem 4.1, (1), may itself be regarded
as a sort of “analytic torsion property.” Thus, it is not surprising that the proof of Theorem
4.1, (1), makes essential use of Theorem 4.1, (3), in the “universal case.”
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Chapter VII: The Geometry of Function Spaces:
Systems of Orthogonal Functions

§0. Introduction

The purpose of the present Chapter is to prepare for the discussion of the Arakelov-
theoretic extension of the theory of Chapter VI in Chapter VIII by developing the theory
of systems of orthogonal functions in the form in which we will use it in this paper. Such
systems of orthogonal functions are central to the archimedean portion of the theory of
this paper. The reason for this is that the main result of this paper, i.e., the comparison
isomorphism between “de Rham functions” (i.e., functions on the universal extension of
an elliptic curve, which is a sort of de Rham cohomology group of the elliptic curve) and
“étale functions” (i.e., functions on the torsion points of the elliptic curve) is, after all, an
isomorphism between function spaces. To consider such function spaces in an Arakelov-
theoretic context thus amounts to considering such function spaces equipped with some
metric. Thus, in order to develop the natural Arakelov-theoretic extension of the theory
of Chapter VI, we must study the relationship between the natural metrics induced from
the de Rham and étale sides of the comparison isomorphism. Because function spaces
tend to be rather large and unwieldy, in order to study their geometry as metrized spaces,
it is of crucial importance to have natural and explicit orthonormal coordinate systems
at our disposal which allow us to express the difference between the geometries induced
by different metrics in a precise and quantitative fashion. Such orthonormal coordinate
systems are provided by systems of orthogonal functions.

It turns out that the natural metrics arising from the de Rham and étale sides of the
comparison isomorphism are rather alien in nature to one another. It is thus difficult to
compare them to one another directly. Thus, in order to interpolate the difference between
them, we must introduce various intermediate systems of orthogonal functions. This is the
main goal of the present Chapter. In §1, we begin by discussing the “general nonsense”
aspects of the theory of orthogonal functions. In §2, we review the theory of Legendre and
Hermite polynomials, not only because they are perhaps the most fundamental examples
of orthogonal functions, but also because they play a crucial role in the theory of the
comparison isomorphism at the infinite prime. In §3, we discuss the theory of the “discrete
Tchebycheff polynomials,” which are a sort of discrete analogue of Legendre polynomials.
These polynomials also play an important role in the theory of this paper. In §4, we discuss
the metric arising from the de Rham side of the comparison isomorphism. Then in §5,
we discuss the relationship between this geometry and the theory of canonical Schottky-
Weierstrass zeta functions. Finally, in §6, we begin our study of the geometry of the space
of canonical Schottky-Weierstrass zeta functions. The geometry of this function space will
be studied further in Chapter VIII.
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In fact, the introduction of various types of canonical Schottky-Weierstrass zeta func-
tions is the first and most crucial step in the interpolation between de Rham and étale
metrics referred to above. One way to think of this interpolation is the following: The de
Rham side of the comparison isomorphism involves functions on continuous spaces, i.e.,
more precisely, on the underlying real analytic manifold – which we denote ER – of a com-
plex elliptic curve E. On the other hand, the étale side of the comparison isomorphism
involves functions on some finite, discrete set of torsion points. Thus, in order to develop
an Arakelov-theoretic extension of the theory of Chapter VI, we must somehow bridge this
gap between continuous and finite, discrete spaces. Now note that ER has precisely two
real dimensions. The passage (§5) from the de Rham-theoretic function space geometry of
§4 to the canonical Schottky-Weierstrass zeta function-based geometry of §6 – which is a
sort of function theory on S1 (which has precisely one real dimension) – then amounts to
the discretization of one of these two real dimensions. This discretization, which we refer
to as the first discretization, turns out to be the most essential. The second discretization,
i.e., the discretization of the remaining S1, will be carried out in Chapter VIII. Thus,
schematically:

de Rham-based function theory on ER (dim/R = 2)

⇓

canonical Schottky-Weierstrass zeta function-based function theory on S1 (dim/R = 1)

⇓

function theory of functions on a discrete set of torsion points (dim/R = 0)

In some sense, this diagram represents the main theme behind the theory of the present
and following Chapters.

§1. The Orthogonalization Problem

In this §, we introduce the basic ideas and terminology surrounding the theory of
systems of orthogonal functions. We begin by discussing what we call the orthogonalization
problem. That is to say, given a Hilbert space equipped with a filtration and an operator
satisfying certain properties, one wishes to construct a corresponding system of orthogonal
elements of the Hilbert space. We then discuss various basic invariants that one can
associate to such data – namely, the means and submeans of the system (cf. Definition
1.1). When the given operator is self-adjoint up to a constant multiple, it turns out that
the system of orthogonal elements is completely determined by a relatively small amount
of data, namely, the means and “principal submeans” (cf. Proposition 1.2). Finally, we
discuss various examples of this theory. We remark that the material that we treat here is
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in essence well-known (cf., e.g., [Sze], [Bate]), but I do not know of a reference that treats
this material from the point of view that we take here.

We begin with a Hilbert space H over a base field K, which we assume to be either
R or C. We will denote the inner product on H by (−,−) and its corresponding norm
by | − |. Let us assume that H is equipped with a filtration of (not necessarily closed)
K-subspaces:

F−1(H) = 0 ⊆ F 0(H) ⊆ F 1(H) ⊆ . . . ⊆ Fn(H) ⊆ . . . ⊆ H

where n ranges over all integers < some fixed N (where N ∈ Z
⋃∞). Moreover, we assume

that the subquotients Qn(H) def= (Fn/F n−1)(H) satisfy:

dimK(Qn(H)) = 1

for all 0 ≤ n < N . Thus, in particular, if 0 ≤ n < N , dimK(Fn(H)) = n + 1. In the
following, we will write

F∞(H) def=
N−1⋃
i=0

F i(H); F∞−1(H) def=
N−2⋃
i=0

F i(H)

for the union of all the (respectively, all but the last) subspace(s) in the filtration.

Note that this data of Hilbert space plus filtration already determines splittings of the
filtration

Fn(H) =
n⊕

i=0

Qi(H)

(for 0 ≤ n < N) given by taking the orthogonal complement of Fn−1(H) in Fn(H). Thus,
one can think of the Qn(H) as subspaces of H. In its most basic form,

The orthogonalization problem is the problem of explicitly determining
these splittings of the filtration F ∗(H).

What does to mean to “explicitly determine” the splittings? To give meaning to this
expression, it is typical to assume that one is also given a (K-linear, but not necessarily
continuous) operator

X : F∞−1(H) → F∞(H)

Moreover, we assume that, for 0 ≤ n < N , X(Fn−1(H)) ⊆ Fn(H), and, moreover, that
the induced morphism
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Qn−1(H) → Qn(H)

is an isomorphism. Put another way, if F 0(H) = K · �, then

Fn(H) = {φ(X) · �}

where φ(X) ranges over all polynomials in X with coefficients in K of degree ≤ n. Thus,
if one is given such an operator X, then it makes sense to ask:

Can one explicitly determine some set of polynomials {φn(X)} (where
deg(φn(X)) = n; n ranges over all nonnegative integers) such that
φn(X) · � generates the one-dimensional K-subspace Qn(H) ⊆ H?

This is the form of the orthogonalization problem that will appear most frequently in the
present Chapter. A mild variant of this problem involves finding φn(X) as above such that
φn(X) · � not only generates Qn(H), but has norm equal to 1.

Let us assume that the set {φn(X) · �} is orthonormal. Then we shall denote the
coefficient of Xn−i in φn(X) by κn,i ∈ K (cf. [Sze], Theorem 12.7.1). Thus,

φn(X) = κn,0 · Xn + κn,1 · Xn−1 + . . . + κn,n

Note (cf. [Sze], §12.3) that the number μn
def= |κn,0|−2 may also be characterized as the

infimum

inf
φ(X)

|φ(X) · �|2

where φ(X) = Xn + . . . is a polynomial in X (with coefficients in K) of degree n with
leading coefficient equal to 1. Note that this infimum is attained for φ(X) def= κ−1

n,0 ·φn(X).

Definition 1.1. We shall refer to the number μn = |κn,0|−2 as the n-th mean of the data

(H, F ∗(H),X). We shall refer to the number rn,i
def= κn,i/κn,0 (for 0 ≤ i ≤ n < N) as the

((n, i)-)submean of the data (H, F ∗(H),X). The (n, 1)-submean will be referred to as the
n-th principal submean.

Note that the means and submeans are uniquely determined by the data (H, F ∗(H),X).
Moreover, if one knows the means and submeans of this data, then one can immediately
reconstruct the system {φn(X)}, up to multiplication (of each φn(X)) by an element of K
of absolute value 1.
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The reason for the terminology “means” is the following: In a certain very basic and
representative case (cf. Example (3) below; [Sze], §12.3) involving polynomials which are
orthogonal with respect to a given weight function on the circle S1, the zeroth mean μ0

is, in fact, the arithmetic mean of the weight function (i.e., in the notation of Example (3)
below, the quantity 1

2π ·
∫ 2π

0
w(θ) dθ). Moreover, in this case, the higher means satisfy

μn ≤ μn−1 (for all positive integers n) and their limit μ∞
def= limn→∞ μn is the geometric

mean of the weight function (i.e., in the notation of Example (3) below, the quantity
exp( 1

2π ·
∫ 2π

0
log(w(θ)) dθ)).

One of the most important cases of the orthogonalization problem is the case where the
operator X is self-adjoint up to a constant multiple, i.e., there exists some fixed constant
αX ∈ K such that (X · v,w) = αX · (v,X · w), for all v,w ∈ F∞(H). In this case, the
polynomials {φn(X)} satisfy a recurrence relation:

Proposition 1.2. Assume that the operator X is self-adjoint up to a constant multiple
αX ∈ K. Then for 1 ≤ n < N − 1, we have

φn+1(X) = (AnX + Bn) · φn(X) − Cn · φn−1(X)

where An = κn+1,0/κn,0; Bn = An · (rn+1,1 − rn,1); Cn = αX · An/An−1 (where the
bar denotes complex conjugation). That is to say, the polynomials φn(X) are entirely
determined by the means and principal submeans.

Proof. The proof is essentially given in [Bate], pp. 158-9. In fact, [Bate] only treats the
case where H is some space of real-valued functions on an interval (a, b) ⊆ R equipped
with the norm (f, g) def=

∫ b

a
f · g ·w arising from some weight function w on (a, b), and X is

the operator given by multiplying by the standard coordinate on R. In fact, however, it is
not difficult to see that the only properties of this data that are used in this proof are the
properties that we have assumed here. For instance, to see that (X ·φn(X)·�,φ(X)·�) = 0
for all φ(X) of degree ≤ n − 2, it suffices to apply the self-adjointness (up to a constant
multiple) of X, which implies that

(φn(X) · �,X · φ(X) · �) = 0

since X ·φ(X) is of degree ≤ n−1. The coefficients An, Bn, and Cn may then be determined
in the obvious fashion – cf. [Bate], pp. 158-9. ©

We conclude this § by listing some examples of the theory discussed so far. Some
examples are well-known; others are to be treated in the present and following Chapters.
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Examples of Orthogonal Systems:

(1) Polynomials on intervals of the real line: Let (a, b) ⊆ R be an open interval in R
(where a, b ∈ R

⋃{±∞}). Write x for the standard coordinate on R. Suppose that w(x)
is positive integrable function on (a, b). Then we may form the Hilbert space L2

w(a, b) of
K-valued functions f on (a, b) which satisfy

∫ b

a
|f |2 · w · dx < ∞. The inner product of

this Hilbert space is given by

(f, g) def=
∫ b

a

f · g · w · dx

(where g denotes the complex conjugate of g). Let us assume that for all n ≥ 0, xn ∈
L2

w(a, b). Then if we take

H def= L2
w(a, b); Fn(H) def= {cnxn + . . . + c1x + c0 | c0, . . . , cn ∈ K}; X

def= x·

(i.e., X is the self-adjoint operator given by multiplication by x), we obtain data as in
the above discussion. The resulting φn(x) def= φn(X) · 1’s are thus orthonormal with
respect to the weight function w(x). This special case of the above discussion is the most
fundamental. Two of the most basic examples of this sort of orthogonal system are the
Legendre polynomials (where a = −1, b = 1, w(x) = 1) and the Hermite polynomials (where
a = −∞, b = ∞, w(x) = e−

1
2x2

). These two cases will be discussed in §2 below.

(2) Polynomials on a finite set of points: This case is similar to (1). Instead of working
with an interval in R, however, we work with the finite set of points {0, . . . , d − 1} ⊆ R.
We then consider a positive weight function w(x) on {0, . . . , d− 1}. The Hilbert space H is
taken to be the set of K-valued functions f on {0, . . . , d− 1} with the inner product given
by

(f, g) def=
d−1∑
x=0

f(x) · g(x) · w(x)

Here, we take N = d, and for 0 ≤ n < N , we let Fn(H) ⊆ H be the subspace of poly-
nomials in x of degree ≤ n; and X the self-adjoint operator given by multiplication by x.
Just as was the case with (1), the present set-up (2) also has a long history, dating back
to the nineteenth century. The most basic example of this sort of orthogonal system is the
system of discrete Tchebycheff polynomials (where w(x) = 1), to be reviewed in §3 below
(cf. also [Sze], §2.8; [Bate], p. 223). As one might expect from the weight functions, the
discrete Tchebycheff polynomials are a sort of discrete analogue of the Legendre polyno-
mials. Another basic example of (2) is the case of Krawtchouk polynomials, which are a
sort of discrete analogue of the Hermite polynomials (cf. [Sze], §2.82).
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(3) Polynomials on the circle S1: Another important case is the case of a positive weight
function w(θ) on the unit circle S1. We let H def= L2

w(S1) be the Hilbert space of com-
plex square integrable functions with respect to w on S1; Fn(H) def= {cnzn + . . . + c1z +
c0 | c0, . . . , cn ∈ C}, where n ≥ 0, and z

def= eiθ; and X the operator given by multiplication
by z. There is a rich and well-developed concerning the resulting orthogonal system φn(z)
– see, e.g., [Sze], Chapters XI, XII – which is in some senses more transparent then the
theory of Example (1). For instance, this theory gives rise to asymptotic formulas for the
φn(z) in terms of w(θ) (cf. [Sze], Chapter XII). Historically, one of the first cases in which
this situation was investigated in detail was the case in which w(θ) is given by a theta
function on S1 (cf. [Sze2]). This case is particularly interesting in that it foreshadowed
the subsequent development of q-analogues of the classical orthogonal polynomials (such
as those of Legendre and Hermite).

(4) Derivatives of a weight function on the circle S1: In this case, we let H def= L2(S1) be
the usual L2-space of square-integrable complex functions on S1. Moreover, we assume
that we are given a function w(θ) on S1 which is infinitely differentiable (i.e., of class C∞).
Let X

def= ∂
∂θ be the usual differentiation operator, and let Fn(H) def= {cnXn + . . . + c1X +

c0 | c0, . . . , cn ∈ C} ·w(θ), for n ≥ 0. Note that the adjoint of X is −X, so Proposition 1.2
applies. Thus, the φn(X) are entirely determined by the means and principal submeans.
In the present paper, the case where w(θ) is a theta function will play an important role
(cf. §6, Definition 6.3; Chapter VIII).

(5) Sections of a line bundle on an elliptic curve: Let E be an elliptic curve over C, and L
be the line bundle defined by the origin. Then L admits a Hermitian metric (unique up to
constant multiple) || ∼ ||L whose curvature is translation invariant (cf. §4 for more details).
This Hermitian metric allows us to define the L2-space of square-integrable sections s of H
satisfying

∫
E

||s||2L < ∞. We take H to be this L2-space, and (for n ≥ 0) Fn(H) to be the

space of sections annihilated by ∂
n+1

. It may be shown that dimC(Fn(H)) = n + 1. Now
one wishes to compute the splittings of this filtration defined by the inner product on H.
This is done in §4 by using the adjoint ∂

∗
of ∂ (with respect to the inner product of H).

In particular, it is shown that if s is a generator of F 0(H), then Qn(H) ⊆ H is generated
by (∂

∗
)n(s) (cf. Theorem 4.5 of §4 below). Thus, if we take X to be ∂

∗
, then we see that

in this case, φn(X) is a constant multiple of Xn. This example will also play a key role in
the present paper and will be treated in detail in §4.

(6) The discrete version of (5): Let E and L be as in (5), and write HR for the Hilbert
space “H” of (5). Fix a positive integer N , and let G ⊆ E be a cyclic subgroup of order
N . Let η ∈ E be a torsion point which is /∈ G. Then it follows from Chapter VI, Theorem
3.1 (2), together with the theory of §4 of the present Chapter, that the restriction map

ΞR : FN−1(HR) → L|η+G
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is bijective. Note that || ∼ ||L defines a natural inner product on the N -dimensional C-
vector space L|η+G. Thus, L|η+G is a finite-dimensional Hilbert space H. Let Fn(H) def=
ΞR(Fn(HR)) ∼= Fn(HR) for 0 ≤ n < N , and write X : F∞−1(H) → F∞(H) for the
operator induced by the “X” of (5) (via the isomorphisms Fn(H) ∼= Fn(HR)). Then one
wishes to compute the resulting φn(X). Indeed,

The computation of the φn(X) in this case is the ultimate goal of the the-
ory of the present and following Chapters. In fact, it is essentially a tau-
tology that concretely speaking, the comparison of the metrized function
spaces of “de Rham functions” and “étale functions” (cf. §0) amounts
to estimating the coefficients of the φn(X).

Since this ultimate goal of comparing Examples (5) and (6) is too difficult to achieve
directly, we relate Examples (5) and (6) by using a certain intermediate orthogonal system
which is a special case of Example (4) (i.e., the case where “w(θ)” is a theta function).
Finally, we analyze this special case of Example (4) (cf. §6; Chapter VIII) by using the
well-known theories of Examples (1) and (2).

§2. Review of Legendre and Hermite Polynomials

In this §, we review the classical orthogonal polynomials of Legendre and Hermite.
These examples are important not only because they serve to illustrate the general theory
of orthogonal systems of functions, but also because they appear naturally in the theory
of the Hodge-Arakelov comparison isomorphism (Chapter VIII) as limiting cases of the
orthogonal functions arising from differential calculus on the “theta-weighted circle”.

We begin with the polynomials of Legendre:

Proposition 2.1. (Legendre Polynomials) For every integer n ≥ 0, we define:

Pn(T ) def=
1
2n

·
[ n
2 ]∑

j=0

(−1)j

(
n

j

)(
2n − 2j

n

)
· Tn−2j

(where [∼] denotes the greatest integer less than the real number in brackets). Thus, Pn(T )
is a polynomial of degree n whose leading term is given by 2−n ·

(
2n
n

)
·Tn and which satisfies

Pn(1) = 1. In particular,

P0(T ) = 1; P1(T ) = T

Moreover, the system of polynomials {Pn(T )} satisfies the following properties:
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(1) (Orthogonality and Norms)
∫
[−1,1]

Pm(T ) · Pn(T ) = 2
2n+1 · δmn.

(2) (Recurrence Formula)

(n + 1) · Pn+1(T ) − (2n + 1)T · PN (T ) + n · Pn−1(T ) = 0

for n ≥ 1.

(3) (Differential Equation)

(1 − T 2)P ′′n (T ) − 2T · P ′n(T ) + n(n + 1) · Pn(T ) = 0.

(4) (Rodrigues’ Formula) Pn(T ) = 1
2n·n! · ( d

dT )n{(T 2 − 1)n}.

Proof. See, e.g., [Rice], pp. 47-48. Note that up to constant multiples, the Pn(T ) are
determined uniquely by the following two properties: (i) Pn(T ) is of degree precisely n;
(ii) if m �= n, then tm(T ) and tn(T ) are orthogonal with respect to L2([−1, 1]). ©

Next, we consider the polynomials of Hermite:

Proposition 2.2. (Hermite Polynomials) Let X be the standard coordinate on R.
Write D

def= d
dX . For n ≥ 0, define

Hn(X) def= e
1
2X2 · Dn(e−

1
2 X2

)

Thus, H0(X) = 1; H1(X) = −X. Let dα
def= e−

1
2 X2 · dX, which we think of as a met-

ric/measure on R. Then for n ≥ 0,

(1) (Orthogonality and Norms)

∫ +∞

−∞
Hn(X) · Hm(X) · dα = (2π)

1
2 · n! · δmn.

(2) (Explicit Formula)

Hn(X) = (−1)n · n! ·
[n/2]∑
m=0

(−2)−m · Xn−2m

m! (n − 2m)!
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where [n/2] is n/2 (respectively, (n − 1)/2) if n is even (respectively,
odd).

(3) (Alternate Definition) Hn(X) = (D − X)n(1).

(4) (Recurrence Formula)

Hn+1(X) + X · Hn(X) = D(Hn(X)) = −n · Hn−1(X).

(5) (Differential Relations) If we set Φn(X) def= Hn(X) · e− 1
4 X2

, then

(D − 1
2
X) · Φn(X) = Φn+1(X); (D +

1
2
X) · Φn(X) = −n · Φn−1(X);

(D2 − 1
4
· X2 − 1

2
) · Φn(X) = −(n + 1) · Φn(X).

Proof. The properties here all follow essentially from [Bate], p. 193. Since, however, we
use different normalizations here from those of [Bate], we sketch the proofs here. First,
define the operator:

Dexp def= e
1
2X2 · D · e− 1

2 X2

Then by definition, Hn(X) = (Dexp)n(1). But one computes easily that

Dexp = e
1
2X2 · (e− 1

2 X2 · D + [D, e−
1
2 X2

])

= D + e
1
2X2 · D(e−

1
2 X2

)
= D − X

This proves the “Alternate Definition.” The “Recurrence Formula” follows by applying
the operator-theoretic relation

D · (D − X)n = (D − X)n · D + [D, (D − X)n]

= (D − X)n · D + n · (D − X)n−1 · [D,D − X]

= (D − X)n · D − n · (D − X)n−1

to the constant function 1. The “Differential Relations” follow by using (D − X)(Hn) =
Hn+1; D(Hn) = −n · Hn−1; and the operator-theoretic relation (D2 − 1

4X2) − 1
2 = D2 −

1
4X2 − 1

2 [D,X] = (D + 1
2X)(D − 1

2X). This operator
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(D +
1
2
X)(D − 1

2
X)

is a sort of Laplacian operator, and is self-adjoint for the L2-norm on R equipped with
the usual measure (i.e., dX). Thus, the fact that the Φn(X)’s are eigenfunctions for this
operator implies that they are mutually orthogonal. The integrals

∫ +∞

−∞
Φ2

n dX

may then be computed by using the fact that D + 1
2X (respectively, D − 1

2X) is adjoint
to −(D− 1

2X) (respectively, −(D + 1
2X)). Finally, the “Explicit Formula” may be proven

by applying induction on n and the relation Hn+1(X) = (D − X) · Hn(X). ©

Remark 1. In fact, the explicit formula given above (i.e., Proposition 2.2, (2)) may be
interpreted as a formula for any two operators A and B satisfying

[A,B] = c ∈ C

and A · v = 0, for some vector v. That is to say, the explicit formula implies that

(A + B)n · v = n! ·
[n/2]∑
m=0

(c/2)m · Bn−2m

m! (n − 2m)!
· v

Indeed, this follows by thinking of A as λ−1 · D and of B as −λ−1 · X, where λ−2 = −c.

Remark 2. Thus, the theory of Hermite polynomials essentially amounts to harmonic
analysis with respect to the metric

dα
def= e−

1
2 X2 · dX

on R. This is interesting relative to the main theme of this work, i.e., of a “comparison
isomorphism via theta functions,” since this sort of factor e−

1
2X2

(i.e., an exponential
with a quadratic exponent) appears frequently in the theory of theta functions (cf., e.g.,
[Mumf3], §12, proof of Lemma 2, (II)). Indeed, from this point of view, one may think of
this factor as being essentially:

exp (Chern class of L) = exp (Riemann form of L)

Note that this sort of factor also appears in the adjustment of integral structure at infinity
in Chapter VI, Theorem 3.1, (3), i.e., this adjustment of integral structure varies roughly
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as the exponential of the “cj ’s” of loc. cit., which (cf. Chapter V, Schola 4.1) are quadratic
functions of j. This appearance of the exponential of a quadratic function in all of these
places is by no means a coincidence, as will become increasingly apparent to the reader as
he/she studies the material of this and the following Chapters.

§3. Discrete Tchebycheff Polynomials and the

Fundamental Combinatorial Model

In this §, we discuss the theory of discrete Tchebycheff polynomials. This theory may
be regarded as the archimedean portion of the fundamental combinatorial model underlying
the theory of this paper. This combinatorial model is the evaluation map

Ξcb : Z[T ]<d −→
d−1⊕
i=0

Z

T �→ (0, 1, 2, . . . , d − 1)

given by evaluating polynomials in the indeterminate T of degree < d (for d a positive
integer) with integral coefficients at the points T = 0, 1, 2, . . . , d − 1. In Chapter V (cf.,
especially, Chapter V, §6), we discussed the evaluation map Ξcb at finite primes. In
particular, we saw that if we adjust the integral structure in an appropriate fashion (cf.
Chapter III, §6; Chapter V, §3) – i.e., if we consider the submodule of Z[T ]⊗ZQ generated
by the polynomials

T [n] def=
1
n!

T (T − 1)(T − 2) · . . . · (T − n + 1)

– then the matrix corresponding to the evaluation map Ξcb takes on the simple upper
triangular form

{T [i]|T=j}{i,j=0,1,2,...,d−1} =

⎛
⎜⎜⎜⎜⎜⎝

1 ∗ . . . ∗ ∗

0 1 . . . ∗ ∗

. . . . . . . . .

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

which is manifestly both integral and invertible at all finite primes. Unfortunately, however,
although the polynomials T [n] are very well-suited to analyzing the effect of Ξcb on the
integral structures at finite primes, they are not well-suited to analyzing Ξcb at the infinite
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(archimedean) prime. At the infinite prime, the range of Ξcb has a natural “L2-metric”
given by:

||(a0, . . . , ad−1)|| = (a2
0 + . . . + a2

d−1)
1
2

(where a0, . . . , ad−1 ∈ R). In the present §, we would like to analyze Ξcb relative to this
L2-metric on the range, i.e., we would like to discuss the metric induced on Z[T ]<d via Ξcb

by this L2-metric.

In the theory of Ξcb at archimedean primes, the polynomials that play the role of the
T [n] are the discrete Tchebycheff polynomials discussed in [Bate], [Sze]. We summarize
their definition and basic properties in the following Proposition:

Proposition 3.1. (Discrete Tchebycheff Polynomials) Fix a positive integer d.
Then we define, for n = 0, 1, 2, . . . , d − 1,

(1) (“Rodrigues’ Formula”) tn(T ) def= n! · δn
[(

T
n

)(
T−d

n

)]

where, as usual, if f(T ) is a polynomial in T , then δ(f)(T ) def= f(T +1)−f(T ). (When it is
necessary to specify the dependence on d, we write tn,d(T ) for tn(T ).) Thus, for instance,

t0(T ) = 1; t1(T ) = 2T − (d − 1)

and (for all n = 0, 1, 2, . . . , d − 1) the leading term of tn(T ) is
(
2n
n

)
· Tn. The polynomials

tn(T ) form an orthogonal system of polynomials for the L2-norm (as defined above) on
the space of functions on the set {0, 1, 2, . . . , d − 1}:

(2) (Orthogonality and Norms)

〈 tn(T ), tm(T ) 〉 def=
d−1∑
T=0

tn(T ) · tm(T ) = (2n+1)−1 ·d(d2 − 12)(d2 − 22) . . . (d2 −n2) · δmn

for m,n = 0, 1, 2, . . . , d − 1 (where δmn is = 0 if m �= n and = 1 if
m = n).

Moreover, these polynomials also satisfy the following properties:

(3) (Recurrence Formula)

(n + 1) · tn+1(T ) − (2n + 1)(2T − d + 1) · tn(T ) + n(d2 − n2)tn−1(T ) = 0
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for n = 1, 2, . . . , d − 1.

(4) (Difference Equation)

(T + 2)(T − d + 2) δ2(tn(T )) + [2T − d + 3 − n(n + 1)] δ(tn(T )) − n(n + 1) tn(T ) = 0

for n = 0, 1, 2, . . . , d − 1.

(5) (Connection with Legendre Polynomials)

lim
d→∞

d−n tn(d · T ) = Pn(2T − 1)

for n = 0, 1, 2, . . . , d − 1. Here Pn(T ) is the n-th Legendre polynomial
(cf. Proposition 2.1).

(6) (Connection with usual Monomials) For any real number ε > 0,

lim
d→∞

d−n(1+ε) tn(d1+ε · T ) =
(

2n

n

)
· Tn

for n = 0, 1, 2, . . . , d − 1.

Proof. See, e.g., [Bate], p. 223. The symbol T (respectively, δ(−); d) in our notation
corresponds to x (respectively, Δ; N) in the notation of loc. cit. Note that up to constant
multiples, the tn(T ) are determined uniquely by the following two properties: (i) tn(T )
is of degree precisely n; (ii) if m �= n, then tm(T ) and tn(T ) are orthogonal with respect
to L2({0, 1, . . . , d − 1}). The only result listed in Proposition 3.1 that cannot be found
in [Bate] is the connection with “the usual monomials Tn.” But this follows immediately
from Rodrigues’ formula, which, in the limit, takes on the form

1
n!

· ( d

dT
)n(T 2n) =

(
2n

n

)
· Tn

as desired. ©

Remark 1. Note that the various properties of the Legendre polynomials listed in Proposi-
tion 2.1 may all be obtained by passing to the limit d → ∞ from the corresponding prop-
erties listed in Proposition 3.1. Thus, the discrete Tchebycheff polynomials are discrete
versions of the Legendre polynomials. The Legendre polynomials appear (by substituting
“cos(θ)” for T ) as eigenfunctions of the Laplacian operator on the sphere (equipped with
its unique rotation invariant metric). Indeed, the differential equation which states that
Pn(cos(θ)) is an eigenfunction of this Laplacian with eigenvalue n(n + 1) may be written
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entirely in terms of T and is, in fact, the differential equation that appears in Proposition
2.1. Thus, the discrete Tchebycheff polynomials may be regarded as discrete versions of the
eigenfunctions of the Laplacian on the sphere.

Remark 2. Note that while the limit of the discrete Tchebycheff polynomials as the length
of the interval under consideration remains fixed and equal to 1 is given by the Legendre
polynomials (Proposition 3.1, (5)), the limit of the discrete Tchebycheff polynomials as the
length of the interval under consideration → 0 is simply the system of “usual monomials”
Tn (up to constant multiples – cf. Proposition 3.1, (6)). That is to say, just as the
Legendre polynomials are “metrically suited” to reflect the geometry of the unit interval,
the usual monomials are functions which are “metrically suited” to reflect the geometry of
an infinitesimal neighborhood of a point. It is for this reason that such functions appear
naturally in the theory of Taylor series, i.e., the theory of expansions of functions in an
infinitesimal neighborhood of a point.

The main result that we wish to prove in this § is the following (Proposition 3.2),
concerning a bound on the coefficients of the discrete Tchebycheff polynomials. First,
let us introduce some notation: Write cn

k [d] for the coefficient of T k in the polynomial
d−n · tn,d(d · T ) (cf. Proposition 2.1). Thus,

cn
k [d] = CoeffT k

{ 1
dn

· tn(d · T )
}

=
1

dn−k
· CoeffT k

{
tn(T )

}
(where “CoeffA(B)” denotes “the coefficient of the monomial A in the polynomial B”).

Proposition 3.2. Let us write

t̃n(T ) def=
d

1
2

|| tn || · tn(d · T )

(where “|| ∼ ||” denotes the L2-norm on {0, 1, . . . d − 1}). Then:

(i.) cn
k [d] ≤ e2n;

(ii.) 1 ≤ dn+ 1
2

|| tn || ≤ (2n + 1)
1
2 · en+1 ≤ 3 · e2n;

CoeffT k

{
t̃n(T )

}
≤ (2n + 1)

1
2 · e3n+1 ≤ 3 · e4n;

(iii.) CoeffT n

{
t̃n(T )

}
≥ cn

n[d] =
(
2n
n

)
≥ 1;

for all integers d, n, k such that 0 ≤ k ≤ n ≤ d − 1.
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Proof. Let us first prove (i.). First, note that d0 · t0(d · T ) = 1; d−1 · t1(d · T ) =
d−1(2d · T + 1 − d) = T − 1 + d−1, so the inequality of (i.) is satisfied for n = 0, 1. Now
we apply the “Recurrence Formula” (cf. Proposition 3.1, (3)), and induction on n. This
gives us:

∣∣∣ CoeffT k

{
d−n−1 · tn+1(d · T )

} ∣∣∣ = ∣∣∣ CoeffT k

{
(
2n + 1
n + 1

)(2d · T − d + 1) · d−n−1 · tn(d · T )

− (
n

n + 1
)(d2 − n2)d−n−1 · tn−1(d · T )

} ∣∣∣
≤
∣∣∣ CoeffT k

{
2(2T − 1 + d−1) · d−n · tn(d · T )

} ∣∣∣
+
∣∣∣ CoeffT k

{
d−(n−1) · tn−1(d · T )

} ∣∣∣
≤ 4 ·

∣∣∣ CoeffT k−1

{
d−n · tn(d · T )

} ∣∣∣
+ 2 ·

∣∣∣ CoeffT k

{
d−n · tn(d · T )

} ∣∣∣
+
∣∣∣ CoeffT k

{
d−(n−1) · tn−1(d · T )

} ∣∣∣
≤ 4 · 7n + 2 · 7n + 7n−1 ≤ 7n

Since e2 ≥ 7, this completes the proof of (i.).

To derive (ii.) from (i.), it suffices (by Proposition 3.1, (2)) to bound

1 ≤ (2n + 1)
1
2 · dn

(d2 − 12)
1
2 · (d2 − 22)

1
2 · . . . · (d2 − n2)

1
2

= (2n + 1)
1
2 · dn ·

{(d − n − 1)! · d
(d + n)!

} 1
2

By Stirling’s Formula (reviewed below – cf. Lemma 3.5), it follows that this last expression
may be bounded by

(2n+1)
1
2 ·
{d2n+1 · (d − n − 1)d−n−1 · e−(d−n−1) · (d − n − 1)

1
2 · e

(d + n)d+n · e−(d+n) · (d + n)
1
2

} 1
2 ≤ (2n+1)

1
2 ·en+1 ≤ 3·e2n

as desired. This completes the proof of (ii.) (as well as the proof of the first inequality of
(iii.)). That cn

n[d] =
(
2n
n

)
≥ 1 follows immediately from Proposition 3.1, (1) (and the fact

that the leading term of
(
T
n

)
,
(
T−d

n

)
is 1

n!T
n). ©

Before proceeding, we would also like to bound the coefficients of the polynomials T [n].
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Proposition 3.3. Let n be a positive integer. Then the coefficients of the polynomial

T [n] def=
1
n!

· T (T − 1) · . . . · (T − (n − 1))

satisfy (for k = 0, . . . , n)

CoeffT k(T [n]) ≤ e2n

nk

In particular, if n ≤ d, then

Coeff(T/d)k(T [n]) ≤ e2n ·
( d

n

)k

≤ e2n ·
(d

n

)n

≤ e2n+d

Proof. If one expands the polynomial T (T − 1) · . . . · (T − (n− 1)), one sees that there are
≤
(
n
k

)
terms of degree k, each of which has a coefficient whose absolute value is a product

of n − k positive integers ≤ n. It thus follows that

CoeffT k(T [n]) ≤
(

n

k

)
· nn−k

n!

≤ 2n · nn−k

nn · e−n

≤ e2n

nk

(where in the second inequality, we use Lemma 3.5 below). If n ≤ d, then (d/n)k ≤ (d/n)n.
Finally, by Lemma 3.6, (d/n)n ≤ ed. ©

Next, we return to the combinatorial evaluation map:

Ξcb : Z[T ]<d −→
d−1⊕
i=0

Z

As discussed earlier, the range admits a natural “L2-norm,” hence defines an arithmetic
vector bundle (cf. Chapter I, Definition 1.1) over Q, which we denote by Φet (for “étale
function space”). Next, let us denote by ΦDR (for “de Rham function space”) the arith-
metic vector bundle defined by Q[T ]<d equipped with: (i.) the metric induced by the
L2-metric on Φet via Ξcb at the infinite prime of Q; (ii.) the integral structure defined
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by T [0], T [1], . . . , T [d−1] at the finite primes of Q. Thus, Ξcb induces an isomorphism of
arithmetic vector bundles:

ΦDR
∼= Φet

Let us denote the filtration on ΦDR given by considering polynomials of degree < n by
Fn(ΦDR). Note that since Φet is a direct sum of trivial arithmetic line bundles, it follows
that

d−1∑
n=0

deg{(Fn+1/F n)(ΦDR)} = deg(ΦDR) = deg(Φet) = 0

In fact, if we compute the “zeroes and poles” of the rational section of the arithmetic line
bundle

Ln
def= (Fn+1/F n)(ΦDR)

defined by Tn, we see (cf. Proposition 3.1, (2); Proposition 3.2, (iii.)) that

deg(Ln) = log(n!) + log(||tn||−1 · CoeffT n(tn(T )))

= log(n!) + log
((2n

n

)
· (2n + 1)

1
2 · ((d − n − 1)!)

1
2

((d + n)!)
1
2

)

(where the first (respectively, second) “log” represents the contribution arising from the
finite (respectively, infinite) places). In fact, the fact that the sum of the deg(Ln)’s is 0
may be checked directly as follows:

Proposition 3.4. The degree of Ln

deg(Ln) = log(n!) + log(||tn||−1 · CoeffT n(tn(T )))

satisfies

| n · log(n/d) +
1
2
· log(d) − deg(Ln) | ≤ 4n + 2

Moreover, the sum of the deg(Ln)’s satisfies:

d−1∏
n=0

exp(deg(Ln)) =
d−1∏
n=0

n! ·
(

2n

n

)
·
( (2n + 1) · (d − 1 − n)!

(d + n)!

) 1
2

= 1
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(for any positive integer n).

Proof. The inequality concerning deg(Ln) follows immediately from Proposition 3.2, (ii.),
and Lemma 3.5 below. Thus, it remains to prove the assertion concerning the sum of the
deg(Ln)’s. Although it is not logically necessary for the proof, we first observe that the
fact that the sum of the deg(Ln)’s is zero is compatible with the inequalities just proven.
Indeed, we have

( d−1∏
n=1

( d

n

)n

· d 1
2

)
≥ 1

while (by Lemma 3.6 below)

( d−1∏
n=1

( d

n

)n

· d 1
2

)
·
( d−1∏

n=0

e−4n−2
)
≤
( d−1∏

n=1

ed · e 1
2 ·log(d)

)
· e−2d2 ≤ ed(d+ 1

2 ·d)−2d2 ≤ 1

as desired.

Now we prove exact equality. For simplicity, we treat the case of d odd; the case of d
even is similar (only easier). We compute:

d−1∏
n=0

(2n + 1) · (d − 1 − n)!
(d + n)!

= 1 · 3 · 5 · . . . · (2d − 1) ·
( 1! · 2! · . . . · (d − 1)!

d! · (d + 1)! · . . . · (2d − 1)!

)
= {1 · 3 · 5 · . . . · (d − 2)}2·( (2!)2 · (4!)2 · . . . · ((d − 3)!)2 · (d − 1)!

(d − 1)! · ((d + 1)!)2 · ((d + 3)!)2 · . . . · ((2d − 2)!)2
)

If we multiply the square root of this expression by
∏d−1

n=0

(
2n
n

)
, we obtain:

( 2! · 4! · . . . · (2d − 2)!
(1! · 2! · . . . · (d − 1)!)2

)
·
(
1 · 3 · . . . · (d − 2) · (2!) · (4!) · . . . · (d − 3)! · (d − 1)!

(d − 1)! · (d + 1)! · (d + 3)! · . . . · (2d − 2)!

)
=
( 2! · 4! · . . . · (d − 1)!

1! · 2! · 3! · . . . · (d − 1)!

)2

·
(1 · 3 · 5 · . . . · (d − 2)

(d − 1)!

)

=
( (2! · 4! · . . . · (d − 3)!)2

1! · 2! · 3! · . . . · (d − 1)!

)
·
( 1

(2! · 4! · . . . · (d − 3)!)2
)

=
1

1! · 2! · 3! · . . . · (d − 1)!
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as desired. ©

Before continuing, we review the following well-known elementary Lemmas, which we
will use often throughout this Chapter:

Lemma 3.5. (Stirling’s Formula) If n is a positive integer, then

n! = nn · e−n ·
√

n ·
√

2π · Θn

where Θn is a real number satisfying 1 ≤ Θn ≤ e.

Proof. For a precise statement of Stirling’s formula, we refer to [Ahlf], Chapter 5, §2.5,
Ex. 2. The inequalities stated here are formal consequences of Stirling’s formula stated in
this form. ©

Lemma 3.6. If x, y are positive real numbers, then ( y
x )x ≤ e

y
e .

Proof. By letting u
def= y

x , we see that it suffices to prove that u ≤ e
u
e , or, equivalently,

that f(u) def= u− e · log(u) is ≥ 0 for all positive real u. Now note that f ′(u) = 1− e
u is 0 if

and only if u = e. Moreover, since f(e) = 0, f(0) = +∞, f(+∞) = +∞, we thus conclude
that f(u) ≥ 0 for all positive real u, as desired. ©

The above discussion of the fundamental combinatorial model at finite and infinite
primes, together with Remark 2 following Proposition 3.1, motivate the following point of
view: Fix an integer n ≥ 2. Then let us consider the limit

lim
d→∞

tn,d(dλ · T )
dλ·n · CoeffT n(tn,d(T ))

where λ ∈ R, and “CoeffT n(−)” denotes the coefficient of Tn in the polynomial in paren-
theses. Proposition 3.1, (6), states that when λ > 1, this limit exists and is equal to Tn.
Proposition 3.1, (5), states that when λ = 1, this limit exists and is equal to a polynomial
of degree n whose leading term is Tn, but which has (as one sees from the explicit formula
for the Legendre polynomials given in Proposition 2.1) nonzero terms of lower degree. The
fact that there exist nonzero terms of lower degree implies that if λ < 1, then the above
limit diverges. Thus, we see that “λ = 1” is a distinguished value associated to the family
of systems of discrete Tchebycheff polynomials that one obtains as d varies.

Terminology 3.7. We shall refer to this special exponent λ of the scaling factor d as
the slope of this family of orthogonal systems on finite discrete sets.
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Later in this Chapter (cf. §6, especially Theorem 6.7), we shall encounter another
family of orthogonal systems on finite discrete sets whose slope is 1

2 and whose limit is the
Hermite polynomials. On the other hand, the natural system of polynomials at the finite
primes, i.e., the binomial coefficient polynomials T [n] (cf. the discussion at the beginning
of this §), have slope 0, i.e., the exact same polynomials T [n] capture the integral structure
at finite primes of Z-valued functions on the set {0, . . . , d− 1}, regardless of the size of d.

It turns out that the combinatorics of these three types of systems,
i.e., Legendre, Hermite, and binomial, are fundamental to the theory of
the comparison isomorphism at archimedean places (cf. Chapter VIII).
Moreover, in Chapter VIII, we shall see that these three types of systems
form the fundamental models of approximation that allow us to estimate
the difference between the natural metrics on the spaces of “de Rham
functions” and “étale functions” (cf. §0).

Also, it is interesting to note that the slopes of these three models, i.e., 1, 1
2 , and 0, are

exactly the same as the slopes of Frobenius that appear in the Frobenius action on the first
crystalline cohomology group associated to an elliptic curve in characteristic p. Indeed,
it is precisely because we feel that there is a deep analogy between these two notions of
“slope” that we chose the name “slope” for the invariant λ of the above discussion. For
more on this analogy, we refer to the discussion of §6.

§4. The Kähler Geometry of a Polarized Elliptic Curve

In this §, we study the Kähler geometry of a polarized elliptic curve (i.e., an elliptic
curve equipped with a line bundle of degree 1) over C. Since the underlying real analytic
manifold of such an elliptic curve is a two (real) dimensional torus, it is natural to expect
that the topology of the torus will play a fundamental role in our analysis. In fact, the key
technology that we will use in this § is a sort of Lie algebra version of the theta groups
discussed in Chapter IV, §1. That is to say, just as the theta group of a line bundle may
essentially be thought of as the extension of (a certain portion of) the étale fundamental
group of the elliptic curve determined by the étale cohomological first Chern class (∈ H2

et

– i.e., the “Weil pairing”) of the line bundle in question, the “differential theta group”
that we consider here may be thought of as the extension of the topological fundamental
group tensored with C determined by the differential-geometric first Chern class of the
line bundle in question. This technology will allow us to analyze (in terms of various
differential operators) the structure of certain natural metrics on the space of sections of
the line bundle in question over the universal extension of the elliptic curve. This analysis
will be important in the following §’s since it will allow us to relate these natural metrics
to the canonical Schottky-Weierstrass zeta functions of Chapter III, §7; Chapter IV, §3.
We remark that the material of this § is “in principle well-known,” but we do not know
an adequate reference for it.
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Let E be an elliptic curve over C. We shall often write E for the complex manifold

defined by the given (algebraic) elliptic curve. Let us write ER (respectively, E
†
R) for the

underlying real analytic manifold associated to E (respectively, the universal extension E†
of E). Then recall (cf. Chapter III, Definition 3.2) that we have a canonical real analytic
section

κR : ER → E
†
R

of the universal extension E† → E of E. This section κR is the unique real analytic section

that respects the group structures of ER, E
†
R.

Let us write R
E† for the subsheaf of the push-forward of O

E† to OE consisting of
sections of finite torsorial degree (cf. Chapter III, Definition 2.2). Thus, R

E† admits an
exhaustive filtration {F n(R

E†)}, where Fn(R
E†) is the subsheaf of sections of torsorial

degree < n. In particular, Fn(R
E†) is a holomorphic vector bundle of rank n on E.

Moreover,

(Fn+1/F n)(R
E†) = τ⊗n

E ⊗C OE

(where τE = ω∨E , and ωE is the cotangent space to E at the origin). Next, let us observe
that the real analytic splitting κR of the torsor E† → E induces a real analytic splitting
of the filtration on R

E† :

R
E† ⊗OE

OER =
⊕
n≥0

τ⊗n
E ⊗C OER

Here, we write OER for the sheaf of complex-valued real analytic functions on ER.

Now let dμ be the unique (real analytic) (1, 1)-form on E which is invariant with
respect to translation by elements of E and whose integral satisfies:

∫
E

dμ = 1

Write

L def= OE(eE)

(where eE is the origin of E). Thus, L is a holomorphic line bundle on E. Write LR
def=

L⊗OE
OER . Let || ∼ ||L be a Hermitian metric on L whose curvature ΘL (i.e., the (1, 1)-

form given locally by ∂∂ log(||s||L), where s is a nonvanishing holomorphic section of L)
satisfies:
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1
2πi

· ΘL = dμ

(Such a Hermitian metric always exists, and, moreover, is unique up to a positive real
constant multiple – cf., e.g., [Mumf1,2,3], §12, Corollary to Lemma 1.) Note that dμ induces
a metric || ∼ ||τ on τE ; || ∼ ||L and dμ induce a metric || ∼ ||VR on VR

def= Γ(ER,LR):

||φ||2VR

def=
∫

E

||φ||2L · dμ

(for φ ∈ VR).

In the following discussion, it will be useful to trivialize ωE once and for all by some
differential form θ such that ||θ||ω = 1 (where || ∼ ||ω is the dual metric to || ∼ ||τ ).
Thus, θ also defines a trivialization θ∨ of τE , as well as trivializations θ, θ

∨
of the complex

conjugates of ωE and τE . Moreover, one checks easily that θ∧θ is imaginary (i.e., complex
conjugation acts on it by multiplication by −1). Thus,

θ ∧ θ = −i · dμ

(where the sign preceding “i” may be checked by computing using local coordinates).
Moreover, the trivialization θ∨ allows us to think of

R
E† ⊗OE

OER =
⊕
n≥0

τ⊗n
E ⊗C OER

as the OER-algebra OER [TDR] of polynomials in the indeterminate TDR.

Now write

Vn
def= Γ(E,L ⊗OE

Fn(R
E†))

Then we can define two natural metrics on Vn, as follows:

(1) Let s ∈ Vn. Then the above real analytic splitting of the filtration on
R

E† induces a decomposition of s into components: s = s[0] + s[1] ·
TDR + . . . + s[n − 1] · Tn−1

DR , where s[i] ∈ VR. Now we define

||s||L2
DR

def=
∑

i

||s[i]||VR

We shall refer to this metric as the L2
DR-metric on Vn.
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(2) Let s ∈ Vn. Then one may think of s as a (holomorphic) section of L
over E†. If we pull-back this section via κR, we obtain a real analytic
section sR ∈ VR. (Note that in the notation of (1) above, sR = s[0].)
Then we define

||s||L2
R

def= ||sR||VR

We shall refer to this metric as the L2
R-metric on Vn.

One of the goals of this § is to describe the precise relationship between the L2
DR- and

L2
R-metrics.

To do this, we must introduce various differential operators, as follows. First, let us
denote by

∇R : LR → LR ⊗OER
ΩER

(where ΩER is the rank two locally free OER-module of (complex-valued) differentials on
ER) naturally associated to the metric || ∼ ||L (cf., e.g., [Wells], Chapter III, Theorem
2.1). Then the decomposition

ΩER = Ω1,0
ER

⊕ Ω0,1
ER

(where Ω1,0
ER

= ΩE ⊗OE
OER , and Ω0,1

ER
is the complex conjugate of Ω1,0

ER
) induces a decom-

position

∇R = ∇1,0 ⊕∇0,1

where ∇0,1 is simply the ∂-operator on L. If we think of E† → E as the torsor of
holomorphic connections on L−1 (cf. Chapter III, Theorem 4.2), then we see that the
(1, 0)-component ∇1,0 induces a real analytic section

κ∇R : ER → E
†
R

Moreover:

Proposition 4.1. We have: κR = κ∇R, i.e., the canonical real analytic section κR of
Chapter III, Definition 3.2, is the same as the real analytic section defined by the canonical
connection ∇R associated to || ∼ ||L.
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Proof. Since E† → E is a holomorphic torsor, we may consider ∂ of real analytic sections
s of this torsor. Such a ∂(s) will be a real analytic (1, 1)-form on E whose integral

∫
E

∂(s) = −1

is precisely the class in H1(E,ΩE) ∼= C corresponding to the torsor E† → E. Next, let
us observe that (it follows from the definitions that) ∂(κ∇R) is a constant multiple of the
curvature ΘL, hence is translation invariant. On the other hand, one sees immediately
from the definition of κR (cf. Chapter III, Definition 3.2) – which is essentially a matter
of linear algebra – that ∂(κR) is also translation invariant. Thus, if we write η

def= κR−κ∇R
for the (1, 0)-form on E given by the difference between the two sections in question, we
see that ∂(η) is a translation invariant (1, 1)-form whose integral is zero. Thus, ∂(η) = 0,
i.e., η is holomorphic. Moreover, η ∈ Γ(E,ΩE) = ωE will be zero if it is invariant under
pull-back by the automorphism α : E → E given by multiplication by −1. On the other
hand, it is clear from the definitions that both κR and κ∇R are invariant with respect to
α. Thus, α(η) = η, which implies that η = 0, as desired (cf. the proof of Chapter III,
Theorem 5.6). ©

Remark. Note that if Gm → E = Gm/qZ is a Schottky uniformization (as in the discussion
preceding Chapter III, Definition 3.3), then the splitting

κΛ1 : Gm → E†|Gm

of Chapter III, Definition 3.3, coincides with κR on S1 ⊆ C× = Gm. (Here, note that
since S1

⋂
qZ = {1}, we also have an inclusion S1 ↪→ Gm/qZ = E.) Indeed, this follows

from the fact that both κR|S1 and κΛ1 |S1 are continuous group homomorphisms. Thus,
their difference is a continuous group homomorphism S1 → ωE (∼= C), hence is zero.
This coincidence of κR and κΛ1 on S1 ⊆ Gm, E will be important in the computations of
this Chapter since it will allow us to relate the real analytic theory of the present § to the
arithmetic Schottky uniformizations over Z that appeared throughout Chapters III-VI.

Now we would like to study the various differential operators introduced above. Recall
that in the above discussion, we chose trivializations θ, θ of ωE , ωE (the complex conjugate
of ωE). These trivializations allow us to regard the operators ∇1,0 and ∇0,1 as operators
on VR = Γ(ER,LR). Note that the L2-norm || ∼ ||VR defined above on VR corresponds
naturally to an inner product 〈 −,− 〉VR on VR.

Proposition 4.2. We have: (∇1,0)∗ = ∇0,1; (∇0,1)∗ = ∇1,0 (where “∗” denotes the
adjoint of an operator on VR equipped with the inner product 〈 −,− 〉VR).

Proof. Indeed, if φ, ψ ∈ VR, then
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〈 ∇1,0(φ), ψ 〉VR =
∫

E

i · 〈 ∇1,0(φ) · θ, ψ · θ 〉L

=
∫

E

i · 〈 ∇R(φ), ψ · θ 〉L

= −
∫

E

i · 〈 φ,∇R(ψ · θ) 〉L +
∫

E

i · d 〈 φ, ψ · θ 〉L

= −
∫

E

i · 〈 φ,∇R(ψ · θ) 〉L

=
∫

E

i · 〈 φ,∇0,1(ψ) · θ ∧ θ 〉L

=
∫

E

〈 φ,∇0,1(ψ) 〉L · dμ = 〈 φ,∇0,1(ψ) 〉VR

Here, the second (respectively, third; fourth; fifth) equality follows from the fact that all
(0, 2)-forms are identically zero (respectively, the fact that ∇R preserves the metric || ∼ ||L;
Stokes’ theorem; the fact that all (2, 0)-forms are identically zero), and we recall that

θ ∧ θ = −i · dμ

Thus, (∇1,0)∗ = ∇0,1, as desired. The relation (∇0,1)∗ = ∇1,0 follows similarly. ©

Thus, in the following, we shall simply write:

∂
∗ def= ∇1,0; ∂

def= ∇0,1

Put another way, ∂
∗

(respectively, ∂) is simply ∇R evaluated in the direction θ∨ (respec-
tively, θ

∨
).

Proposition 4.3. We have: [∂
∗
, ∂] = −2π.

Proof. Note that [θ∨, θ
∨
] = 0. (Indeed, this follows from the fact that the Lie algebra of

the complex Lie group E† is abelian!) Thus, it follows from the definitions (cf. [Wells],
Chapter III, Proposition 1.9) that [∂

∗
, ∂] is simply the curvature ΘL (which is a (1, 1)-form)

divided by θ ∧ θ = −i · dμ, i.e., [∂
∗
, ∂] = −2π, as desired. ©

Remark. One can now define the Lie algebra Gdiff
L to be the Lie algebra (over C) of

operators on VR generated by 1, ∂, ∂
∗
. Thus, we have an exact sequence

0 → C · 1 → Gdiff
L → Lie(E†) → 0
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where C · 1 is central in Gdiff
L , and Lie(E†) = C · ∂

∗
+ C · ∂ is the Lie algebra of E†.

Moreover, the commutator product of Gdiff
L defines a bilinear morphism

Lie(E†) × Lie(E†) → C

that maps (∂
∗
, ∂) �→ −2π (by Proposition 4.3). This bilinear form is essentially the “dif-

ferential geometric” first Chern class of the line bundle L. Thus, this “differential theta
group” Gdiff

L is very much analogous to the “étale theta groups” reviewed in Chapter IV,
§1.

Next, we would like to consider the following Laplacian operator on VR:

Δ def=
1
2π

· ∂∗ · ∂

Then we have the following:

Proposition 4.4. We have:

(i.) Δ∗ = Δ

(ii.) Δ · ∂ = ∂ · (Δ − 1)

(iii.) Δ · ∂∗ = ∂
∗ · (Δ + 1)

In particular, the eigenvalues of Δ are all real and nonnegative, and eigenfunctions of
Δ with distinct eigenvalues are orthogonal to one another (with respect to 〈 −,− 〉VR).
Moreover, if, for s ∈ VR, λ ∈ R, we have Δ(s) = λ · s, then Δ(∂(s)) = (λ − 1) · (∂(s));
Δ(∂

∗
(s)) = (λ + 1) · (∂∗(s)).

Proof. (i.) Since (∂)∗ = ∂
∗
, (∂

∗
)∗ = ∂, we obtain immediately that Δ∗ = Δ.

(ii.) Compute (using Proposition 4.3): 2π ·Δ·∂ = ∂
∗ ·∂ ·∂ = ∂ ·∂∗ ·∂−2π ·∂ = 2π ·(∂ ·Δ−∂).

(iii.) Compute (using Proposition 4.3): 2π · Δ · ∂∗ = ∂
∗ · ∂ · ∂∗ = ∂

∗ · ∂∗ · ∂ + 2π · ∂∗ =
2π · (∂∗ · Δ + ∂

∗
).

The final remarks — except for the fact that the eigenvalues are ≥ 0, but this follows from
the well-known argument:

Δ(s) = λ · s =⇒ λ 〈 s, s 〉VR = 〈 s,Δ(s) 〉VR = 〈 ∂(s), ∂(s) 〉VR ≥ 0
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— in Proposition 4.4 are formal consequences of (i.), (ii.), and (iii.). ©

We are now ready to prove the following result:

Theorem 4.5. The pull-back morphism

κ∗R : Vn → VR

is injective, and its image is equal to the kernel of ∂
n

(as an operator on VR). In fact,
to apply ∂ to an element of the image of κ∗R : Vn → VR corresponds to applying the
relative exterior differential operator (in the direction θ

∨
) of the morphism E† → E to

the corresponding element of Vn. In particular, Ker(∂) ∼= V1 is a one-dimensional complex
vector space. If ζDR

0 ∈ Ker(∂) is nonzero, write

ζDR
n

def=
1
n!

· (∂∗)n(ζDR
0 )

if n > 0, ζDR
n

def= 0 if n < 0. Then for n ≥ 0, we have: C · ζDR
n = Ker(Δ − n), and

ζDR
0 , . . . , ζDR

n form an orthogonal basis of Ker(∂
n+1

) such that ∂
∗
(ζDR

n ) = (n + 1) · ζDR
n+1;

∂(ζDR
n ) = 2π · ζDR

n−1; ||ζDR
n ||2VR

= (2π)n

n! · ||ζDR
0 ||2VR

.

Proof. That κ∗R : Vn → VR is injective follows from the fact that if it were not, then
the image of κR would be contained inside a one-dimensional complex subvariety of E†,
which is absurd (cf. the definition of κR in Chapter III, §3). The statement concerning
the correspondence between ∂ and the relative exterior differential operator for E† → E
follows immediately from the definitions (cf. also the discussion of Chapter III, §3).

To see that the image κ∗R(Vn) is equal to Ker(∂
n
), we reason as follows: First,

the statement concerning the relationship between ∂ and the relative exterior differen-
tial operator of E† → E implies that κ∗R(Vn) ⊆ Ker(∂

n
). Thus, in particular, we see

that dimC(Ker(∂
n
)) ≥ n. On the other hand, one proves easily by induction on n that

dimC(Ker(∂
n
)) ≤ n: Indeed, this is clear if n = 1, since (by definition) Ker(∂) = Γ(E,L).

If n ≥ 2, then note that ∂ defines a morphism Ker(∂
n
) → Ker(∂

n−1
) whose kernel has

dimension ≤ 1. Thus, by the induction hypothesis, we conclude that dimC(Ker(∂
n
)) ≤

1 + (n − 1) = n, as desired. This completes the proof that κ∗R(Vn) = Ker(∂
n
).

That Δ(ζDR
n ) = n · ζDR

n (for n ≥ 0) follows from Proposition 4.4, (iii.), induction on
n, and the fact that Δ(ζDR

0 ) = 0. If, for s ∈ VR, we have Δ(s) = n · s (for n ≥ 1), then by
Proposition 4.4, (ii.), Δ(∂(s)) = (n − 1) · ∂(s). Thus, by induction on n, we obtain that
Δ(s) = n · s (for n ≥ 1) implies ∂

n
(s) ∈ Ker(Δ). But if Δ(t) = 0, then
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〈 ∂(t), ∂(t) 〉VR = 〈 t, ∂
∗ · ∂(t) 〉VR = 〈 t,Δ(t) 〉VR = 0

so ∂(t) = 0. Thus, in summary, Ker(Δ − n) ⊆ Ker(∂
n+1

). On the other hand, this im-
plies that ζDR

0 , . . . , ζDR
n (which are mutually orthogonal by Proposition 4.4, hence linearly

independent over C) are ∈ Ker(∂
n+1

), which (as we saw above) has dimension n + 1.
Thus, we conclude that ζDR

0 , . . . , ζDR
n form an orthogonal basis of Ker(∂

n+1
), and that

Ker(Δ − n) = C · ζDR
n , as desired.

That ∂
∗
(ζDR

n ) = (n + 1) · ζDR
n+1 follows from the definitions. That ∂(ζDR

n ) = 2π · ζDR
n−1

follows by computing (using Proposition 4.3):

∂(ζDR
n ) = n−1 · ∂ · ∂∗(ζDR

n−1) = 2π · n−1 · (Δ + 1)(ζDR
n−1) = 2π · ζDR

n−1

Finally, ||ζDR
n ||2VR

= (2π)n

n! · ||ζDR
0 ||2VR

follows by computing:

2π ·n · 〈 ζDR
n , ζDR

n 〉 = 2π · 〈 Δ(ζDR
n ), ζDR

n 〉 = 〈 ∂(ζDR
n ), ∂(ζDR

n ) 〉 = (2π)2 · 〈 ζDR
n−1, ζ

DR
n−1 〉

This completes the proof of Theorem 4.5. ©

We are now ready to analyze the relationship between the L2
DR- and L2

R-metrics:

Corollary 4.6. Let ζDR
n [TDR] ∈ Vn be the unique element such that κ∗R(ζDR

n [TDR]) = ζDR
n .

Then, relative to the above decomposition of R
E† ⊗OE

OER , we have:

ζDR
n [TDR] =

n∑
i=0

ζDR
i ·

( (2π · TDR)n−i

(n − i)!

)

= ζDR
0 ·

( (2π · TDR)n

n!

)
+ ζDR

1 ·
( (2π · TDR)n−1

(n − 1)!

)
+ . . . + ζDR

n−1 · (2π · TDR) + ζDR
n

In particular, ζDR
0 [TDR], ζDR

1 [TDR], . . . , ζDR
n [TDR], . . . are mutually orthogonal with respect

to both the L2
DR- and L2

R-metrics, and their norms are given as follows: If we rescale the
metric on τE so that |TDR| = ρ ∈ R>0 (note that in the above discussion ρ = 1), then

|| ζDR
n [TDR] ||L2

R
= ||ζDR

n ||VR =
( (2π)n

n!

) 1
2 · ||ζDR

0 ||VR
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|| ζDR
n [TDR] ||L2

DR
=
{ n∑

i=0

( (2π · ρ)n−i

(n − i)!

)2

·
( (2π)i

i!

)} 1
2 · ||ζDR

0 ||VR

= || ζDR
n [TDR] ||L2

R
·
{ n∑

i=0

(
n

i

)((2π · ρ2)i

i!

)} 1
2

= || ζDR
n [TDR] ||L2

R
· Cn(ρ)

where 1 ≤ Cn(ρ) ≤ eπ · 2n
2 · Max(1, ρn).

Proof. Let us first show that

ζDR
n [TDR] = ζDR

0 ·
( (2π · TDR)n

n!

)
+ ζDR

1 ·
( (2π · TDR)n−1

(n − 1)!

)
+ . . . + ζDR

n−1 · (2π · TDR) + ζDR
n

We use induction on n. The result is clear for n = 0, so assume the result known for
“n − 1.” The fact that the constant term of ζDR

n [TDR] is ζDR
n follows from the definition

of ζDR
n [TDR]. Thus, to prove the above equality, it suffices to prove it after applying

∂
∂TDR

. Since applying ∂
∂TDR

corresponds (relative to pull-back via κ∗R) to applying ∂ to the
corresponding element of VR (cf. Theorem 4.5), it follows (since ∂(ζDR

n ) = 2π · ζDR
n−1 by

Theorem 4.5) that it suffices to show that

2π ·ζDR
n−1[TDR] = ζDR

0 ·
(2π · (2π · TDR)n−1

(n − 1)!

)
+ζDR

1 ·
(2π · (2π · TDR)n−2

(n − 2)!

)
+. . .+ζDR

n−1 · (2π)

But this follows from the induction hypothesis. This completes the computation of the
components of ζDR

n [TDR].

The statement concerning orthogonality then follows from the statement concerning
the orthogonality of the ζDR

n ’s in Theorem 4.5. The computation of the norms also follows
from the norm computation of Theorem 4.5 (together with the elementary facts that(
n
i

)
≤ 2n,

∑n
i=0

xi

i! ≤ ex for x ≥ 0). ©

Remark 1. One can regard the results of Corollary 4.6 as the computation of the analytic
torsion of Vn

def= Γ(E,L⊗OE
Fn(R

E†)). If there were “no analytic torsion,” then the norm

of ζDR
n [TDR] would go roughly as the norm of its “leading term,” i.e., roughly as

(2π)n

n!
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not as ( (2π)n

n! )
1
2 (as in Corollary 4.6).

Remark 2. The reader may already have noticed many formal similarities between Theorem
4.5, Corollary 4.6 above and Chapter III, Theorem 7.4. These similarities are by no means
an accident. In §5 below, we will discuss the relationship between the theory of the present
§ and the theory of the canonical Schottky-Weierstrass functions of Chapter III, §7.

Remark 3. Just as in Chapter III, Remark 3 (following Chapter III, Theorem 7.4), one
can give a more “generating function-theoretic” formulation of the Corollary 4.6 as follows:
Let s be an indeterminate. Let us write ∂

E† for the “∂-operator” acting on real analytic

sections of the holomorphic line bundle L over E
†
R. Thus, we may regard ∂

E† as an
operator on

LR[TDR]

If we write ∂, ∂
∗

for the operators obtained on LR[TDR] by acting on the coefficients, then
one computes easily that

∂
E† = ∂ − ∂

∂TDR

hence that

[ ∂
E† , ∂

∗
+ 2π · TDR ] = [ ∂, ∂

∗
] − [

∂

∂TDR
, 2π · TDR ] = 2π − 2π = 0

(by Proposition 4.3). Thus, since (∂
E†)(ζDR

0 ) = 0, ∂
E† also annihilates

e(∂
∗
+2π·TDR)·s · ζDR

0 =
∑
n≥0

( n∑
i=0

ζDR
i · (2π · TDR)n−i

(n − i)!

)
· sn

= ζDR
0 [TDR] + ζDR

1 [TDR] · s + ζDR
2 [TDR] · s2 + . . . + ζDR

n [TDR] · sn

+ . . .

The coefficients of this series are precisely the functions discussed in Corollary 4.6. The
norms computed in Corollary 4.6 may also be computed directly from these exponential
expressions. We leave this as an exercise for the reader.

252



§5. The Relationship Between de Rham and
Canonical Schottky-Weierstrass Zeta Functions

In this §, we study the relationship between the canonical Schottky-Weierstrass (“SW
” for short) zeta functions of Chapter III, §7, and the de Rham (“DR” for short) zeta
functions of §4 (i.e., the ζDR

n ’s). In a word, the combinatorics of this relationship are
described by the Hermite polynomials (cf. Proposition 2.2). Using the well-known explicit
form of the Hermite polynomials, we give explicit equations relating the two types of zeta
functions, and use these equations to bound the norm of the canonical SW zeta functions
in terms of the L2

DR-metric (of §4). One way to think about the material of the present §
is to regard it as corresponding to the usual Hodge comparison theorem (i.e., the “de Rham
isomorphism” between de Rham cohomology and singular cohomology – cf. Chapter VIII,
§1) over C, expressed at the level of differential operators, i.e.,

as the relationship between the “de Rham-theoretic” operators ∂, ∂
∗

of
§4, which correspond to differentiation in the direction of the Hodge
filtration and its complex conjugate, and the operator δ∗ of Chapter III,
§7, which corresponds to differentiation along a topological cycle of the
elliptic curve.

This relationship between differential operators is expressed at the function-theoretic level
as the relationship between the DR zeta functions of §4 and the canonical SW zeta functions
of Chapter III, §7.

We continue with the notation of §4. Thus, E is an elliptic curve over C. Recall from
the discussion of Chapter III, §3, that one has a natural isomorphism – called the de Rham
isomorphism –

H1
DR(E,OE) ∼= H1

sing(E, 2πi · R) ⊗R C = Λ ⊗Z C

(where Λ def= H1
sing(E, 2πi ·Z)) of complex vector spaces. The left-hand side of this isomor-

phism, i.e., H1
DR(E,OE), may be regarded as the tangent space to the universal extension

E†, and thus admits a natural surjection H1
DR(E,OE) → τE arising from the projection

E† → E. Note that since the right-hand side of this isomorphism H1
sing(E, 2πi ·C) admits

a natural real structure (given by ΛR
def= Λ⊗Z R), it follows that the isomorphism induces

on H1
DR(E,OE) a natural complex conjugation automorphism. If we use this automor-

phism to conjugate the projection H1
DR(E,OE) → τE , we thus obtain a natural direct sum

decomposition:

H1
DR(E,OE) = τE ⊕ τ c

E

(where τ c
E is the complex conjugate C-vector space to τE). Note that here we use the

notation “τ c
E” rather than τE because we wish to think of τ c

E here as a “holomorphic
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dimension” (which just happens to be isomorphic to the complex conjugate of τE), not as
an “anti-holomorphic dimension” (which is the interpretation most commonly given to a
“bar,” as in τE).

Next, suppose that we are given a rank one Z-submodule

Λ1 ⊆ Λ

(cf. Chapter III, §3, the discussion of the “Gm-splitting”). Choose a generator λ1 ∈ Λ1.
Then there exists a unique isomorphism of τE with C relative to which E may be written
in the form

E = C/ 〈 1, τ 〉 = C×/qZ

where the “1” corresponds to λ1, q
def= e2πiτ , and Im(τ) > 0. Relative to the de Rham

isomorphism and the direct sum decomposition of H1
DR(E,OE) discussed above, λ1 corre-

sponds to some element

(v, u · vc) ∈ τE ⊕ τ c
E = H1

DR(E,OE)

where vc is the element of τ c
E defined by v; u ∈ C satisfies |u| = 1. Moreover, the length

of v (relative to the metric || ∼ ||τ ) of §4) may be computed as follows:

Lemma 5.1. If λ1 corresponds under the de Rham isomorphism to (v, u · vc) (where
u ∈ C satisfies |u| = 1), then the length of v is given by:

||v||τ =
1

{8π2 · Im(τ)} 1
2

Proof. Let us think of E as C/ 〈 1, τ 〉 = C×/qZ, and write z (respectively, U) for
the standard coordinate on C (respectively, C×). Thus, U = exp(2πiz). Moreover, the
differential corresponding to λ1 ∈ Λ1 is given by d log(U) def= dU

U = 2πi · dz. That is to say,
||v||−1

τ = ||d log(U)||ω = 2π · ||dz||ω. Moreover, the definition of || ∼ ||ω is such that

||dz||2ω
def=

∣∣∣ ∫
E

dz ∧ dz
∣∣∣ = 2 · Im(τ)

as desired. ©

Now we would like to consider the relationship between the canonical SW zeta functions
of Chapter III, §7, and the DR zeta functions introduced in §4. To avoid confusion, let
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us denote the indeterminate “T” of Chapter III, §7, by TSW. Thus, we would like to
investigate the relationship between ζPD

n [TSW] (cf. Chapter III, Theorem 7.4) and ζDR
n [TDR]

(Corollary 4.6). It follows immediately from the definitions that this essentially amounts
to investigating the relationship between the differential operators:

∂
∗

+ TDR and δ∗ + TSW

(where δ∗ is as in Chapter III, §7). This relationship may be described as follows:

Lemma 5.2. As operators on the holomorphic sections of L over E†, the above two
operators are related as follows:

L · (∂∗ + u · ∂ + TDR) = δ∗ + TSW

for some u,L ∈ C, where |u| = 1, |L| = {8π2 · Im(τ)}− 1
2 .

Proof. Note that δ∗ + TSW is (by definition) the tautological connection on L|
E† applied

in the direction (d log(U))∨. Put another way, this operator is the operator given by
differentiation in the direction defined by λ1 ∈ Λ1 ⊆ ΛC

∼= H1
DR(E,OE) (where we regard

H1
DR(E,OE) as the tangent space to E†). By definition, the tangent space to ER ⊆ E† is

given by Λ ⊗ R ↪→ H1
DR(E,OE). Thus, it follows that this tangent direction is contained

inside the real analytic submanifold ER ⊆ E† defined by the section κR. Moreover, since
λ1 corresponds to (v, u ·vc) under the de Rham isomorphism, differentiation in this tangent
direction on ER is given by the operator L · (∂∗+ u · ∂), for some L, u as in the statement
of Lemma 5.2. Note that here, L is defined by the relation L · θ = (d log(U))∨. Similarly,
relative to the decomposition of E† induced by κR, the tautological connection (applied
in the tangent direction in question) at points of E† with relative coordinate (i.e., the
coordinate of E† over E) TDR is given by adding to the connection at the section κR the
quantity “TDR times (d log(U))∨

θ .” But this quantity is simply L · TDR, as desired. ©

Remark. Note that the equality of operators in Lemma 5.2 does not necessarily hold when
applied to arbitrary real analytic sections of L over E†. Indeed, roughly speaking, the
operator on the right-hand side of the formula in Lemma 5.2 is the “holomorphic portion”
of the operator on the left-hand side of this formula.

We are now ready to compute the precise relationship between ζPD
n [TSW] and ζDR

n [TDR].
It turns out that the combinatorics of this relationship are described by the Hermite poly-
nomials (cf. Proposition 2.2).

Let us begin by observing first of all that both ζPD
n [TSW] and ζDR

n [TDR] are holomorphic
(hence, in particular, real analytic) sections of the line bundle L over E†. Thus, it makes
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sense to compare them. Here, by ζPD
n [TSW] we mean the complex analytic version of

the canonical Schottky-Weierstrass zeta functions (cf. Chapter III, Remark 1 following
Theorem 7.4). That is to say, these functions are the functions obtained by regarding the
(clearly convergent – since differentiation does not effect convergence) formal series in q of
Chapter III, §7, as holomorphic functions of q = e2πiτ (where the family of elliptic curves
in question is given by C×/qZ, and τ ∈ H

def= {τ ∈ C | Im(τ) > 0}.

Theorem 5.3. Let n ≥ 0 be an integer. Choose ζDR
0 , ζPD

0 to be the same section ζ0 ∈
Γ(E,L). Then we have the following equality of holomorphic (hence, in particular, real
analytic) sections of L over E†:

ζPD
n [TSW] def=

1
n!

· (δ∗ + TSW)n(ζPD
0 ) = Ln ·

[n/2]∑
m=0

(π · u)m · (∂∗ + TDR)n−2m(ζDR
0 )

m! (n − 2m)!

= Ln ·
[n/2]∑
m=0

(π · u)m

m!
· ζDR

n−2m[TDR]

where u,L ∈ C satisfy |u| = 1, |L| = {8π2 · Im(τ)}− 1
2 .

Similarly,

ζDR
n [TDR] def=

1
n!

· (∂∗ + TDR)n(ζDR
0 ) =

[n/2]∑
m=0

(−π · u)m · (δ∗ + TSW)n−2m(ζPD
0 )

Ln−2m · m! (n − 2m)!

=
[n/2]∑
m=0

(−π · u)m

Ln−2m · m!
· ζPD

n−2m[TSW]

Proof. Indeed, the first formula follows immediately by applying the identity

(A + B)n · v = n! ·
[n/2]∑
m=0

(c/2)m · Bn−2m

m! (n − 2m)!
· v

(cf. Remark 1 following Proposition 2.2) with A
def= u ·∂ and B

def= ∂
∗
+TDR (which satisfy

A(ζ0) = u · ∂(ζ0) = 0 and [A,B] = u · [∂, ∂
∗
] = 2π · u (by Proposition 4.3)) to compute

1
n!

· (∂∗ + u · ∂ + TDR)n(ζDR
0 ) = L−n · 1

n!
· (δ∗ + TSW)n(ζPD

0 ) = L−n · ζPD
n [TSW]

(where the first equality follows from Lemma 5.2).
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The second formula follows similarly, by letting A
def= −u · ∂, B

def= L−1 · (δ∗ + TSW).
Thus, A + B = ∂

∗
+ TDR (cf. Lemma 5.2), [A,B] = −2π · u (cf. Proposition 4.3). Note

that Lemma 5.2 applies here since the operator ∂ (as we have defined it here) maps all
of the holomorphic sections of L (over E†) in question to holomorphic sections of L (over
E†). Indeed, this may be verified immediately by applying ∂ to the expression on the
right-hand side of the first formula of Corollary 4.6 (cf. also the proof of Corollary 4.6).
©

Corollary 5.4. Let n ≥ 0 be an integer. Choose ζDR
0 , ζPD

0 to be the same section
ζ0 ∈ Γ(E,L). Then if we rescale the metric on τE so that |TDR| = ρ ∈ R>0 (note that in
the above discussion ρ = 1; cf. Corollary 4.6), then

|| n! · ζPD
n [TSW] ||L2

DR
≤ ||ζ0||L2

DR
· eπ · Max(1, ρn) ·

( 8π · n
Im(τ)

)n
2

Proof. We compute, using Theorem 5.3 and Corollary 4.6:

|| n! · ζPD
n [TSW] ||L2

DR
≤ |n 1

2 · L|n · πn ·
[n/2]∑
m=0

n!
n

n
2 · (m!)

· || ζDR
n−2m[TDR] ||L2

DR

≤
( n

8π2 · Im(τ)

)n
2 · (2 · π2 · 2π)

n
2 · eπ · Max(1, ρn) · || ζ0 ||L2

DR

·
[n/2]∑
m=0

( n! · n!
nn · (m!)2 · (n − 2m)!

) 1
2

≤
( n

Im(τ)

)n
2 · (π/2)

n
2 · eπ · Max(1, ρn) · || ζ0 ||L2

DR

·
[n/2]∑
m=0

( n!
(m!)2 · (n − 2m)!

) 1
2

≤
( n

Im(τ)

)n
2 · (π/2)

n
2 · eπ · Max(1, ρn) · || ζ0 ||L2

DR
· 3n

≤ || ζ0 ||L2
DR

· eπ · Max(1, ρn) ·
( 8π · n

Im(τ)

)n
2

as desired. ©
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§6. Differential Calculus on the Theta-Weighted Circle

In this §, we commence our study of the function theory of canonical SW zeta func-
tions. We begin by giving various estimates (which will be useful to us in Chapter VIII,
as well as in the present §) of the coefficients of the q-expansions of several types of canon-
ical SW zeta functions (Lemmas 6.1, 6.2). Next, we introduce what we call orthogonal
canonical SW zeta functions. This new type of canonical SW zeta function is obtained by
applying the orthogonalization process discussed in §1 (cf., especially, Example (4)) to (a
slight variant of) the divided power canonical SW zeta functions of Chapter III, Theorem
7.4, and Chapter IV, Theorem 3.2. Certain limits (in which the scaling factor has slope 1

2
– cf. the discussion surrounding “Terminology 3.7”) of the orthogonal SW zeta functions
give rise to canonical SW zeta functions based on the Hermite polynomials (Theorem 6.7).
Finally, we relate this fact to the discussion of §5 (which may be summarized as stating
that the de Rham zeta functions are essentially Hermite polynomial-based canonical SW
zeta functions).

Write

A
def= C{{qsc}}

(i.e., convergent series in qsc). In fact, in this §, we shall think of qsc = exp(2πiτsc) as
a complex variable on the unit disc |qsc| < 1, i.e., τsc ∈ H

def= {z ∈ C | Im(z) > 0}.
Let S

def= Spec(A) (cf. the notation of Chapter IV, §2,3). We would like to think of qsc

as the q-parameter associated to the elliptic curve Ẽ of Chapter IV, §2,3. Thus, qsc is
equal to “qn” in the notation of Chapter IV, §2,3. In the following, we shall write qcv

(where “cv” stands for “covering”) for the “q” of Chapter IV, §2,3. Thus, in the present
complex analytic context, the elliptic curve “E” (respectively, “Ẽ”) of Chapter IV, §2,3,
corresponds to Ecv

def= Gm/qZ
cv (respectively, Esc

def= Gm/qZ
sc). Also, we shall write Ucv

for the standard multiplicative coordinate on the copy (Gm)cv of Gm which uniformizes
Ecv = (Gm)cv/qZ

cv, and Usc for the multiplicative coordinate on the copy (Gm)sc of Gm

which uniformizes Esc
def= (Gm)sc/qZ

sc. Thus,

Usc = Un
cv; qsc = qn

cv

and Esc = Ecv/μn.

Fix a character

χ ∈ Hom(Πn, (μn)S)

as in Chapter IV, Theorem 3.2, where n = 2m ∈ 2Z. Let σχ ∈ Γ(C∞
Ŝ

, (L⊗n
C∞

Ŝ

)χ), iχ ∈
{−m,−m + 1, . . . ,m − 1} be as in Chapter V, Theorem 4.8. Note that the action of
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Zet ×μn on (L⊗n
C∞

Ŝ

)χ is compatible with the Galois action of Zet ×μn on C∞
Ŝ

, regarded as

a covering space of the elliptic curve Ẽ of Chapter IV, §2,3. Thus, if we descend and then
translate into the complex analytic language of the present section, we obtain a natural
line bundle

Lχ
sc

of degree 1 on Esc. Note that the section “θm” may then be thought of as a section of the
line bundle Lχ

sc over the cover

(Gm)cv → (Gm)sc → Esc

(where (Gm)cv → (Gm)sc is the map Ucv �→ Usc = Un
cv). Thus, if we divide the series for

σχ in Chapter V, Theorem 4.8, by θm, we obtain the (twisted) theta function Θχ:

∑
k∈Z

q
1
2 ·k

2+(iχ/n)·k
sc · U2mk+iχ

cv · χ(ket) =
∑
k∈Z

q
1
d ( 1

2 ·k
2+(iχ/n)·k)

or · U2mk+iχ
cv · χ(ket)

where qor
def= qd

sc, and d is a fixed positive integer. (We shall also write τor
def= d · τsc.) The

point of introducing these two “q’s” (i.e., qsc and qor) is that we want to think of ourselves
as being interested in degree d line bundles on the elliptic curve Eor

def= Gm/qZ
or. To study

such bundles, it is convenient to take invariants with respect to “Zet/d” (cf. Chapter IV,
Theorem 1.4) and work with degree d line bundles on the quotient Eor/(Zet/d) = Esc.
Thus, we would like to think of the d as a scaling factor. That is to say, qor is our “original
q,” while qsc is our “scaled q.”

Recall the differential operator δ∗ of Chapter IV, Theorem 3.2. This operator satisfies
δ∗(UN

cv) = N · Un·N
cv (for N ∈ Z). Let us define the “χ-shifted operator”

δ∗χ
def= δ∗ − iχ

n

Thus,

δ∗χ(Un·N+iχ
cv ) = N · Un·N+iχ

cv

(for N ∈ Z). Our first goal in this § is to bound the coefficients in the expansion of the
“shifted and scaled monomial” canonical SW zeta functions

ζSS
r · θ−m def=

(δ∗χ
d

)r

(Θχ) =
∑
k∈Z

(k

d

)r

· q
1
d ( 1

2 ·k
2+(iχ/n)·k)

or · U2mk+iχ
cv · χ(ket)
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(where r is a nonnegative integer).

Lemma 6.1. Let a be a positive integer. Then the coefficient CSS
k of U

2mk+iχ
cv in ζSS

r

satisfies the following:

(1) If |k| ≤ a · d, then |CSS
k | ≤ e−

π
d ·Im(τor)·(k2+(iχ/m)·k) · ar ≤ ar.

(2) Let ε > 0 be a real number. If |k| ≥ Max( 1+ε
ε , a · d), r ≤ d, and

a ≥ 1
2 · (b + 1) · Q−1, where b ∈ R≥1, and

Q
def=

π

2(1 + ε)
· Im(τor)

then |CSS
k | ≤ e−b·|k|. In particular, in this case, we have:

∞∑
|k|=a·d

|CSS
k | ≤ 4 · e−a·b·d;

∞∑
|k|=a·d

|CSS
k |2 ≤ 4 · e−2a·b·d

Proof. The estimates of (1) follow immediately from the facts that |qor| ≤ 1; |k| ≤ a·d =⇒
(|k|/d)r ≤ ar.

The estimates of (2) are obtained as follows: First, we observe that since |k| ≥ a · d,
|k| ≥ 1+ε

ε (so k2 − |k| ≥ 1
1+ε · k2), r ≤ d, and a · Q ≥ 1

2 · (b + 1),

log(|CSS
k |) = r · log(|k|/d) − 2π · Im(τor) ·

1
2d

(k2 + (2 · iχ/n) · k)

≤ r · log(|k|/r) − 2π · Im(τor) ·
1
2d

(k2 − |k|)

≤ |k| − 2π · Im(τor) ·
k2

2d(1 + ε)
= |k| − 2Q · (|k|/d) · |k|
≤ |k| − 2Q · a · |k|
≤ −b · |k|

(where in the third line, we use Lemma 3.6), as desired. The inequalities concerning the
sums then follow immediately. Note that here we use the facts that
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∞∑
k=0

e−k = (1 − e−1)−1 ≤ 2;
∞∑

k=0

e−2k = (1 − e−2)−1 ≤ 2

(which follow from e2 ≥ e ≥ 2). ©

Next, although it will not be logically necessary in the following discussion, we observe
that the estimates of Lemma 6.1 allow us to estimate the coefficients of the congruence
canonical SW zeta functions of Chapter V, Theorem 4.8 (cf. Chapter VIII, §3,4,5, for more
details on the archimedean properties of these functions):

Lemma 6.2. The coefficient CCG[r]k of U
2mk+iχ
cv in the series

ζCG
r · θ−m =

(
δ∗χ + λr

r

)
(Θχ) =

∑
k∈Z

(
k + λr

r

)
· q

1
2 ·k

2+(iχ/n)·k
sc · U2mk+iχ

cv · χ(ket)

of Chapter V, Theorem 4.8, satisfies the following:

(1) If |k| ≤ a · d, then |CCG[r]k| ≤ ar · e3r ·
(

d
r

)r

≤ ar · e3r+d.

(2) Let ε > 0 be a real number. If |k| ≥ Max( 1+ε
ε , a · d), 1 ≤ r ≤ d, and

a ≥ 1
2 · (b + 5) · Q−1, where b ∈ R≥1, and

Q
def=

π

2(1 + ε)
· Im(τor)

then |CCG[r]k| ≤ e−(b+1)·|k| ·
(

d
r

)r

≤ e−b·|k|. In particular, in this case,
we have:

∞∑
|k|=a·d

|CCG[r]k| ≤ 4 · e−a·b·d;
∞∑

|k|=a·d
|CCG[r]k|2 ≤ 4 · e−2a·b·d

Proof. To apply Lemma 6.1, it suffices to estimate the coefficients of the polynomial(
T+λr

r

)
in terms of (T/d)i. One sees easily (since |λr| ≤ r

2 ; for N = 0, 1, . . . , r − 1,
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|−N +λr| ≤ r) that the estimates of Proposition 3.3 for the coefficients of the polynomial(
T
r

)
also hold for

(
T+λr

r

)
(by the same proof as that given for Proposition 3.3). Thus, these

coefficients may be bounded by e2r ·
(

d
r

)r

≤ e2r+d. Since there are a total of r + 1 ≤ er

terms to contend with, we thus see that in order to get estimates for CCG[r]k, it suffices

to multiply the estimates for CSS
k in Lemma 6.1 by e3r ·

(
d
r

)r

≤ e3r+d. This takes care
of (1). For (2), we note further that if we take the “b” of Lemma 6.1 to be b + 4 (in the
notation of the present Corollary), then using r ≤ d ≤ a · d ≤ |k|, we obtain

|CCG[r]k| ≤ e−(b+4)·|k|+3r ·
(d

r

)r

≤ e−(b+4)·|k|+3·|k| ·
(d

r

)r

≤ e−(b+1)·|k| ·
(d

r

)r

≤ e−(b+1)·|k|+d ≤ e−(b+1)·|k|+|k| = e−b·|k|

as desired. ©

Next, we would like to introduce the orthogonal canonical SW zeta functions, as fol-
lows. First, in the following discussion, we would like to restrict the variable Ucv ∈ C×

to the unit circle; we shall write Ucv|(S1)cv = exp(2πitcv) (where tcv ∈ [0, 2π)) for this
restricted Ucv. Then observe that Θχ|(S1)cv is a smooth function on (S1)cv (varying with
the parameter q). Recall that L2((S1)cv) is equipped with a natural inner product given
by

(f, g) def=
1
2π

·
∫

(S1)cv

f · g · dt

Now we would like to apply the theory of §1, especially Example (4). That is to say, we take
H def= L2((S1)cv), X

def= δ∗, and (for r ≥ 0) F r(H) to be the complex vector subspace of H
generated by functions of the form P (δ∗χ) ·Θχ, where P (−) is a polynomial (with complex
coefficients) of degree ≤ r. Put another way, we would like to consider the (C-)linear
combinations of the “standard monomial” canonical SW zeta functions

ζSM
r · θ−m def=

(
δ∗
)r

(Θχ) =
∑
k∈Z

(k +
iχ
n

)r · q
1
d ( 1

2 ·k
2+(iχ/n)·k)

or · U2mk+iχ
cv · χ(ket)

= q
− 1

2 ·(iχ/n)2

sc ·
∑

kχ ∈ Z+
iχ
n

kr
χ · q

1
2k2

χ
sc · Ukχ

sc · χ((kχ − iχ
n

)et)

= q
− 1

2d ·(iχ/n)2

or ·
∑

kχ ∈ Z+
iχ
n

kr
χ · q

1
2d k2

χ
or · Ukχ

sc · χ((kχ − iχ
n

)et)
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(where Usc
def= Un

cv) whose restrictions to (S1)cv are orthonormal with respect to the inner
product just defined on L2((S1)cv). If we normalize the orthonormal system that we deal
with by assuming that the leading coefficient (i.e., the coefficient of ζSM

r ) in the degree
r member of this system is a positive real number, then we see that we obtain uniquely
defined functions

ζOR,S1

0 , . . . , ζOR,S1

r , . . .

(for r ≥ 0). Because these functions are a sort of prototype of the orthogonal functions
that we will consider in Chapter VIII(cf., especially, §2), we give them a name:

Definition 6.3. We refer to the ζOR,S1

r as the orthogonal canonical Schottky-Weierstrass
zeta functions.

Note that it follows from the general theory of §1 (e.g., Proposition 1.2) that the ζOR,S1

r

are completely determined by their means and principal submeans.

In the following discussion, we would like to consider the trivialization θm of the line
bundle Lχ

sc over the covering (Gm)cv → (Gm)sc → Esc, where (Gm)cv → (Gm)sc is the
map Ucv �→ Usc = Un

cv. Note that this line bundle Lχ
sc on the elliptic curve Esc admits

a unique (up to a positive real multiple) metric with translation-invariant curvature (cf.
the discussion of the metric || ∼ ||L in §4). This metric thus defines a function ||θm|| of
Ucv. For simplicity, let us assume that our metric has been normalized so that ||θm|| = 1
at Ucv = 1. Note that since the natural action of μ∞ on “L⊗n

C∞
Ŝ

” (cf. the discussion at the

beginning of Chapter IV, §2) fixes θm (as well as the metric || ∼ ||), we thus see that ||θm||
is invariant under translation by elements of (S1)cv. In particular, it follows that we may
regard ||θm|| as a function of Usc.

Lemma 6.4. At Usc = qρ
sc · exp(2πitcv) (where tcv ∈ [0, 2π), ρ ∈ R≥0), we have

||θm|| = |qsc|
1
2 ·ρ

2

Proof. First, observe that the section θm (of the line bundle Lχ
sc over the cover (Gm)cv →

(Gm)sc → Esc) is nonzero for all values of Ucv ∈ C× (i.e., it really is a “trivialization”).
Indeed, this follows, for instance, from the fact that the holomorphic connection defined by
θ is regular (i.e., has no poles) for all Ucv ∈ C× (cf. Chapter III, Theorem 5.6), which would
not be the case if θ had zeroes. Thus, θm constitutes a trivialization of the line bundle in
question at all values of Ucv ∈ C×. In particular, since the curvature of the metric that we
are using is translation-invariant (i.e., “constant”), it follows that the Laplacian ∂2

∂ρ2 + ∂2

∂t2
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of the function φ(ρ, t) def= log(||θm||) (where Usc = qρ
sc · exp(2πitcv)) is constant. Since

φ(ρ, t) = φ(ρ) is independent of tcv, we thus obtain that d2φ
dρ2 is constant. But this implies

that φ(ρ) is a quadratic function of ρ, hence determined as soon as it is determined for
Usc = qZ

sc, i.e., for Ucv = qZ
cv. Thus, it suffices to prove Lemma 6.4 for such values of Usc.

But for Ucv = qN
cv, we may calculate ||θm|| as the value of ||Net(θm)|| = ||qm·N2

cv ·Un·N
cv ·θm||

at Ucv = 1, which is just |qcv|m·N
2

= |qsc|
1
2 ·N

2
, as desired (since Ucv = qN

cv corresponds to
Usc = qN

sc ). This completes the proof. ©

Now that we have computed the absolute value of our trivialization θm, we would like
compute various L2-norms of canonical zeta functions as follows. First, let

P (s)

be a polynomial with complex coefficients in the indeterminate s. Then let us write

ζP [T ]·θ−m def= P (δ∗+T )·(Θχ) = q
− 1

2 ·(iχ/n)2

sc ·
∑

kχ ∈ Z+
iχ
n

P (kχ+T )·q
1
2k2

χ
sc ·Ukχ

sc ·χ((kχ−
iχ
n

)et)

(where the indeterminate “T” is as in Chapter IV, §3). We would like to consider the
value of this zeta function at Ucv = qρ

cv · exp(2πitcv) (where tcv ∈ [0, 2π), ρ ∈ R≥0), i.e.,
Usc = Un

cv = qρ
sc · exp(2πitcv · n). Since at this value of Ucv, the indeterminate T takes on

the value ρ (cf. Chapter III, Corollary 5.9, for rational ρ; since T is a continuous function,
we thus obtain the result for arbitrary real ρ). Thus,

ζP [T ]·θ−m|U=qρ
cv·exp(2πitcv) = q

− 1
2 ·(iχ/n)2

sc ·∑
kχ ∈ Z+

iχ
n

P (kχ + ρ) · q
1
2 k2

χ+kχ·ρ
sc · exp(2πitcv · n · kχ) · χ((kχ − iχ

n
)et)

In particular, by applying Lemma 6.4, for Ucv = qρ
cv · exp(2πitcv), we obtain:

||ζP [T ]|| = |qsc|−
1
2 ·(iχ/n)2+ 1

2 ·ρ
2

·
∣∣∣ ∑

kχ ∈ Z+
iχ
n

P (kχ + ρ) · q
1
2 k2

χ+kχ·ρ
sc · exp(2πitcv · n · kχ) · χ((kχ − iχ

n
)et)
∣∣∣

= |qsc|−
1
2 ·(iχ/n)2

·
∣∣∣ ∑

kχ,ρ ∈ Z+ρ+
iχ
n

P (kχ,ρ) · q
1
2 k2

χ,ρ
sc · exp(2πitcv · n · kχ,ρ) · χ((kχ,ρ − ρ − iχ

n
)et)
∣∣∣
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Thus, by squaring and integrating over (S1)cv, we obtain the following:

Lemma 6.5. Write Ucv = qρ
cv ·exp(2πitcv), where we fix ρ, and let exp(2πitcv) ∈ (S1)cv

vary. Then for |Ucv| = |qcv|ρ, we have:

||ζP [T ]||2L2((S1)cv) = |qsc|−(iχ/n)2 ·
∑

kχ,ρ ∈ Z+ρ+
iχ
n

|P (kχ,ρ)|2 · |qsc|k
2
χ,ρ

If, moreover, we integrate these L2((S1)cv) norms as ρ ranges from 0 to 1, we obtain:

||ζP [T ]||2L2(Esc)
= |qsc|−(iχ/n)2 ·

∫
kχ ∈ R+

iχ
n

|P (kχ)|2 · |qsc|k
2
χ · dkχ

= e
2π
d ·Im(τor)·(iχ/n)2 ·

∫
R

|P (k)|2 · e− 2π
d ·Im(τor)·k2 · dk

(where the L2-norm L2(Esc) is defined by integrating the L2((S1)cv) norms as a function
of ρ, where ρ ranges from 0 to 1).

Next, we would like to see what happens if we replace (S1)cv in the above discussion by
μd. Let us write tsc

def= n · tcv, and think of μd ⊆ (S1)sc as a subset of the circle (S1)sc with
coordinate exp(2πitsc). Then by restricting ζP to μd and dividing by a(n) (unnecessary)
factor of exp(2πi · iχ · tcv) · θm, we obtain

ζP,μd
def= exp(−2πi · iχ · tcv) · θ−m · P (δ∗) · (Θχ)|μd

= q
− 1

2 ·(iχ/n)2

sc ·
∑

kmod∈Z/dZ

exp(2πitsc · kmod) ·
∑

kχ ∈ kmod+
iχ
n

P (kχ) · q
1
2k2

χ
sc

· χ((kχ − iχ
n

)et)

Let us define the inner product on L2(μd) by

(f, g) def=
1
d
·
∑

α∈μd

f(α) · g(α)

Note that, just as in Lemma 6.5, we have:

||ζP,μd ||2L2(μd) = |qsc|−(iχ/n)2 ·
∑

kmod∈Z/dZ

∣∣∣ ∑
kχ ∈ kmod+

iχ
n

P (kχ) · q
1
2 k2

χ
sc · χ((kχ − iχ

n
)et)
∣∣∣2
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Now assume (just for this discussion of functions on μd) that iχ �= 0. By Chapter VI,
Theorem 3.1, (2), this assumption implies that as P (−) ranges over the polynomials of
degree < d, the resulting ζP,μd form a basis of L2(μd). Thus, we may orthonormalize
these ζP,μd ’s to obtain

ζ
OR,μ
0 , . . . , ζOR,μ

d−1

Definition 6.6. We refer to the ζ
OR,μ
r as the μd-orthogonal canonical Schottky-Weierstrass

zeta functions.

We are now ready to state the main result of this §: First, let us write Lχ
sc|(S1)cv

for the restriction of Lχ
sc to the circle (S1)cv ⊆ (Gm)cv which is parametrized by Ucv.

Note that this bundle Lχ
sc|(S1)cv over (S1)cv admits a natural trivialization defined by

θm. In the following theorem, we would like to consider the analogue for the line bundle
Lχ

sc on Esc of the real analytic sections ζDR
r of §4, 5, of the line bundle associated to

the origin of an elliptic curve. Since the pair (Esc,Lχ
sc) is isomorphic (by translation) to

the pair (Esc,OEsc(eEsc)) (where eEsc is the origin of E), we thus see that, by transport of
structure, the theory of §4,5, also applies to the pair (Esc,Lχ

sc). Thus, by abuse of notation,
we denote by ζDR

r the resulting real analytic section of Lχ
sc on Esc (associated to the choice

of ζDR
0 defined by σχ). The following theorem concerns the restriction ζDR

r |(S1)cv of ζDR
r

to (S1)cv ⊆ (Gm)cv.

Theorem 6.7. Let r ≥ 0 be an integer. Let us fix qor, and consider d ≥ 1 as variable.
Write

γd
def=
{ d

4π · Im(τor)

} 1
2

and Pr,d(s)
def= Hr(s ·γ−1

d ), where Hr(−) is the Hermite polynomial of Proposition 2.2. Let

ζHMd
r

def= ζPr,d ; ζ
HMd,μd
r

def= ζPr,d,μd

Then if we regard sections of Lχ
sc|(S1)cv as functions on (S1)cv by means of the trivialization

θm, we have:

lim
d→∞

γ
− 1

2
d · (r!) 1

2 · ζOR,S1

r = lim
d→∞

γ
− 1

2
d · ζHMd

r = lim
d→∞

γ
− 1

2
d · r!

(2π)r/2
· ζDR

r

(where the convergence is relative to the sup norm for functions on (S1)cv). If, moreover,
iχ �= 0, then (if we trivialize Lχ

sc|μ∞ by means of exp(2πi · iχ · tcv) · θm) we have:
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lim
d→∞

γ
− 1

2
d · (r!) 1

2 · ζOR,μ
r = lim

d→∞
γ
− 1

2
d · ζHMd,μd

r = lim
d→∞

γ
− 1

2
d · r!

(2π)r/2
· ζDR

r |μd

(where the convergence is relative to the sup norm for functions on μ∞).

Remark. It is not difficult to see that in the latter part of Theorem 6.7, if χ is of order
precisely m, and one takes the limit over d which are not divisible by m, then the latter
part of Theorem 6.7 holds even if iχ = 0. Indeed, the only place where we used/will use
that iχ �= 0 is in the application of Chapter VI, Theorem 3.1, (2).

Proof. Let us first consider the (S1)cv case. Recall from Lemma 6.5 that for |Ucv| = |qcv|ρ,
ρ = 0, we have:

γ−1
d · ||ζP ||2L2((S1)cv) = γ−1

d · e 2π
d ·Im(τor)·(iχ/n)2 ·

∑
kχ ∈ Z+

iχ
n

|P (kχ)|2 · e− 2π
d ·Im(τor)·k2

χ

= e
2π
d ·Im(τor)·(iχ/n)2 ·

∑
k′ ∈ γ−1

d
(Z+

iχ
n )

|Pγd
(k′)|2 · e− 1

2 ·(k
′)2 · γ−1

d

where k′
def= kχ · γ−1

d ; Pγd
(k′) def= P (k′ · γd). Thus, as d → ∞,

lim
d→∞

γ−1
d · ||ζP ||2L2((S1)cv) = lim

d→∞

∫
k′∈R

|Pγd
(k′)|2 · e− 1

2 ·(k
′)2 · dk′

Put another way, this is the L2-norm of Pγd
(−) for the measure on R that appears in

Proposition 2.2. Since all the norms considered here are on the finite-dimensional C-
vector space of ζP for P (−) of degree ≤ r, we thus see that if we take the basis for this
vector space given by letting

P (s) = 1, . . . , (s/γd)j , . . . , (s/γd)r

and we divide the norms by γ
1
2
d , then this normed vector space converges to the normed

vector space spanned by the first r+1 Hermite polynomials of Proposition 2.2. This proves
limd→∞ γ

− 1
2

d · (r!) 1
2 · ζOR,S1

r = limd→∞ γ
− 1

2
d · ζHMd

r . (Note that here we use the fact that
the L2-norm of the Hermite polynomial Hr is a constant (independent of r) times (r!)

1
2 .)

To prove that limd→∞ γ
− 1

2
d · ζHMd

r = limd→∞ γ
− 1

2
d · r!

(2π)r/2 · ζDR
r , it suffices to observe that

(by the latter part of Lemma 6.5)
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lim
d→∞

∫
k′∈R

|Pγd
(k′)|2 · e− 1

2 ·(k
′)2 · dk′ = lim

d→∞
γ−1

d · ||ζP ||2L2(Esc)

and that the L2-norm L2(Esc) of Lemma 6.5 coincides with the norm || ∼ ||L2
R

of §4. (Note
that we use here the fact that the L2-norm of the Hermite polynomial Hr is a constant

(independent of r) times (r!)
1
2 , while the L2

R-norm of ζDR
r is a constant times

(
(2π)r

(r!)

) 1
2
.)

Thus, it remains to prove the analogous results for μd when iχ �= 0. These results
follow similarly by applying the formula

||ζP,μd ||2L2(μd) = |qor|−
1
d ·(iχ/n)2 ·

∑
kmod∈Z/dZ

∣∣∣ ∑
kχ ∈ kmod+

iχ
n

P (kχ) · q
1
2d k2

χ
or · χ((kχ − iχ

n
)et)
∣∣∣2

together with the estimates of Lemma 6.1. When we apply Lemma 6.1, we take “d,” “r”
(notation of Lemma 6.1) to be r (in the present notation), and “a” (notation of Lemma
6.1) to be [ d

2r ] (in the present notation). This allows us to take “b” (notation of Lemma
6.1) arbitrarily large as d → ∞. Also, note that the factor of “dr” (notation of Lemma
6.1) in ζSS

r does not bother us here, since in the present notation, this factor corresponds
to rr which is constant as d → ∞. Thus, we obtain:

lim
d→∞

∑
kmod∈Z/dZ

∣∣∣ ∑
kχ ∈ kmod+

iχ
n

P (kχ) · q
1
2d k2

χ
or · χ((kχ − iχ

n
)et)
∣∣∣2

= lim
d→∞

∑
kχ ∈ Z+

iχ
n , |kχ|≤ d

2

∣∣∣P (kχ) · q
1
2d k2

χ
or

∣∣∣2

= lim
d→∞

∑
kχ ∈ Z+

iχ
n

∣∣∣P (kχ) · q
1
2d k2

χ
or

∣∣∣2

which is the same sum as that which appeared in the discussion of the (S1)cv case. ©

Remark 1. Stated in words, Theorem 6.7 asserts that:

As d → ∞, the orthogonal systems of canonical SW zeta functions
obtained from the natural inner products on L2((S1)cv) and L2(μd)
converge to: (i) one another; (ii) canonical SW zeta functions modeled
on the Hermite polynomials; (iii) the de Rham zeta functions studied in
§4,5.

Thus, in particular, Theorem 6.7 implies that the de Rham zeta functions ζDR
r are equal to

Hermite polynomial-based canonical Schottky-Weierstrass zeta functions. In other words,
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we see that we have obtained another independent proof of the latter part of Theorem 5.3,
which, in the notation of the present discussion, reads:

ζDR
r =

[r/2]∑
j=0

(−π · u)j · (δ∗)r−2j(σχ)
Lr−2j · j! (r − 2j)!

=
(2π · u)

r
2

(−1)r · r! · (−1)r · r! ·
[r/2]∑
j=0

(−2)−j · (δ∗)r−2j(σχ)
{(2π · u)

1
2 · L}r−2j · j! (r − 2j)!

=
(2π · u)

r
2

(−1)r · r! · Hr({(2π · u)
1
2 · L}−1 · δ∗) · σχ

(where |L| = {8π2 · Im(τsc)}−
1
2 , |u| = 1). Note that the scaling factor here, i.e., {(2π ·u)

1
2 ·

L}, has absolute value equal to { 2π
8π2·Im(τsc)

} 1
2 = γd. That is to say, Theorems 5.3 and 6.7

are consistent in the sense that they yield the same scaling factor. Note, relative to the
discussion surrounding Terminology 3.7, that this implies that (if we think of Im(τor) as
fixed), the ζ

OR,μ
r ’s (for varying d) have slope 1

2 (as promised in §3).

Remark 2. It is interesting to note that in the discussion of this §, there are three natural
parameters involved; we would like to think of these parameters as follows:

Holomorphic Variable: τor

Anti-Holomorphic Variable: d

Arithmetic Variable: r

That is to say, one way to think of the goal of this paper is that we are trying to descend
the Z-scheme (M1,0)Z (i.e., the moduli stack of elliptic curves) to some sort of object over
the hypothetical/mythical “field of constants” F1 ⊆ Z. This descent may be carried out
at different primes; here we are interested in carrying it out at the infinite prime. Thus,
one expects that (M1,0)Z should have three arithmetic/real dimensions over F1. Two
of these arithmetic dimensions should be geometric and correspond to the holomorphic
and anti-holomorphic coordinates on the complex manifold (M1,0)C. We feel that these
two dimensions are given by τor (the holomorphic coordinate) and the scaling parameter d
(which plays the role of the anti-holomorphic coordinate, and corresponds to powers of the
geometric Frobenius morphism in the p-adic theory). Note that this interpretation of these
parameters is compatible with the fact that the exponent of the exponential appearing in
the various theta/zeta functions of this § essentially consists of τor·d−1, which is reminiscent
of the exponent “|z|2 = z ·z” of the exponential which appears in the usual complex theory
of theta functions (cf., e.g., Remark 2 following Proposition 2.2; [Mumf3], §12). Finally, we
have the index “r” which plays the role of the single arithmetic dimension of F1. In the p-
adic theory, this dimension corresponds to arithmetic Frobenius, i.e., the single dimension
of Gal(Fp).
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Note that this point of view is compatible with the point of view of the discussion at
the end of §3 (see also Remark 1 above). Indeed, the slope as discussed in §3 is obtained
precisely by looking at the “action of the scaling parameter d.” Also, we observe that
this point of view is reminiscent of the point of view of the Introductions of [Mzk1,2]
which discuss the analogy between Frobenius actions and real analytic Kähler metrics.
(The connection here being that orthogonal functions typically arise from some sort of real
analytic Kähler metric, as in §4.)
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Chapter VIII: The Hodge-Arakelov
Comparison Theorem

§0. Introduction

In Chapter VII, we so-to-speak “introduced the actors” (which are systems of orthog-
onal functions) in the archimedean theory of the Comparison Isomorphism. In the present
Chapter, we “present the play.” Put another way, we complete the “Scheme-Theoretic
Comparison Isomorphism” of Chapter VI by computing the behavior of the Comparison
Isomorphism at archimedean primes. Thus, in summary, our result may be roughly stated
as follows (cf. the Introduction to Chapter VI):

There is a natural bijection between certain natural types of algebraic
functions on the universal extension of an elliptic curve and the “set-
theoretic functions” on the torsion points of the elliptic curve. Moreover,
this bijection is compatible with certain natural metrics/integral struc-
tures defined at all (finite and infinite) primes of a number field, as well
as at the divisor at which the elliptic curve in question degenerates.

We refer to this result as the Hodge-Arakelov Comparison Isomorphism. In more precise
terms, our result, obtained by combining Theorem 7.4 of the present Chapter with Chapter
VI, Theorem 4.1, is as follows:

Theorem A. (The Hodge-Arakelov Comparison Isomorphism) Let d,m ≥ 1 be
integers such that m does not divide d. Suppose that Slog is a fine noetherian log scheme,
and let

C log → Slog

be a log elliptic curve over Slog such that the divisor at infinity D ⊆ S (i.e., the pull-
back of the divisor at infinity of (M1,0)Z via the classifying morphism S → (M1,0)Z) is a
Cartier divisor on S. Also, let us assume that étale locally on the completion of S along
D, the pull-back of the Tate parameter q to this completion admits a d-th root, and that
we are given a torsion point

η ∈ E∞,S(S∞)
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of order precisely m which defines line bundles Lst,η, L
ev

st,η (cf. Chapter V, §1). If d is

odd (respectively, even), then let L def= Lst,η (respectively, L def= Lev

st,η). Then:

(1) (Compatibility with Base-Change) The formation of the push-forward (cf.
Chapter VI, Definition 1.3)

(fS)∗(L|
E
†
∞,[d]

)<d{∞, et}

(along with its filtration) commutes with base-change (among bases Slog satisfying
the hypotheses given above).

(2) (Zero Locus of the Determinant) Assume that S is Z-flat. The scheme-
theoretic zero locus of the determinant det(Ξ{∞, et}), i.e., the determinant of
the evaluation map (cf. Chapter V, Proposition 2.2; Chapter VI, Theorem 3.1,
(1))

Ξ{∞, et} : (fS)∗(L|
E
†
∞,[d]

)<d{∞, et} → (fS)∗(L|
(dE

†
∞)

)

is given by the divisor

d · [η
⋂

(dE)]

(where dE is the kernel of multiplication by d on Ed). In fact, the divisor of poles
of the inverse morphism to Ξ{∞, et} is contained in the divisor [η

⋂
(dE)].

(3) (Analytic Torsion at the Divisor at Infinity) For each ι, there is a sequence
of elements

aι = {(aι)0, . . . , (aι)d−1}; (aι)j ≈ j2

8d

of Q≥0 · log(q), where (aι)j goes roughly (as a function of j) as j2

8d (cf. Chapter
VI, Theorem 3.1, (2)), such that the subquotients of the natural filtration on the
domain of Ξ{∞, et} admits natural isomorphisms:

(F j+1/F j)((fS)∗(L|
E
†
∞,[d]

)<d{∞, et}) −→ 1
j!

· exp(−(aι)j) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j
E
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for j = 0, . . . , d−1. Moreover, the sections of L|
E
†
∞,[d]

that realize these bijections

have q-expansions in a neighborhood of infinity that are given explicitly in
Chapter V, Theorem 4.8.

(4) (Integrality Properties at the Infinite Prime) Suppose that D = ∅, and S

is of finite type over C. Let us then write L, Ξ, dE
†, E

†
[d] for L, Ξ{∞, et}, dE

†
∞,

E
†
∞,[d]. Then one may equip L with a (smooth, i.e., C∞) metric | ∼ |L whose

curvature is translation-invariant on the fibers of E → S. Moreover, such
a metric is unique up to multiplication by a (smooth) positive function on S(C).
Then | ∼ |L defines a metric on the vector bundle (fS)∗(L|

dE†) (i.e., the range

of Ξ), namely, the L2-metric for “L-valued functions on dE
†” (where we assume

that the total mass of dE
† is 1). Since Ξ is an isomorphism, this metric thus

induces a metric on (fS)∗(L|
E
†
[d]

)<d (i.e., the domain of Ξ), which we denote by

|| ∼ ||et

and refer to as the étale metric. On the other hand, by using the canonical real

analytic splitting of E
†
[d](C) → E(C) (i.e., the unique splitting which is a contin-

uous homomorphism), we may split sections of (fS)∗(L|
E
†
[d]

)<d into components

which are real analytic sections of L ⊗ τ⊗r
E (where r < d) over E(C). Since τE

gets a natural metric by square integration over E, these components have natural
L2-norms determined by integrating their | ∼ |2L over the fibers of E(C) → S(C).
This defines what we refer to as the de Rham metric

|| ∼ ||DR

on (fS)∗(L|
E
†
[d]

)<d. The relationship between the étale and de Rham metrics may

be described using three “models”:

(A.) The Hermite Model: This model states that if we fix r < d,
and let d → ∞, then over any compact subset of S(C), the étale metric
|| ∼ ||et on F r((fS)∗(L|

E
†
[d]

)<d) converges (up to a factor ≤ eπ+r, ≥ 1)

to the metric || ∼ ||DR, as well as to a certain metric “|| ∼ ||HMd
”

defined by considering Hermite polynomials scaled by a factor of
(constant)·

√
d in the derivatives of the theta functions ∈ (fS)∗(L|E) =

F 1((fS)∗(L|
E
†
[d]

)<d).

(B.) The Legendre Model: This model states (roughly) that over
any compact subset of S(C), a certain average – which we denote
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|| ∼ ||w,μa
– of translates of the étale metric || ∼ ||et on (fS)∗(L|

E
†
[d]

)<d

is equal (provided d ≥ 25), up to a factor of (constant)d, to the de
Rham metric || ∼ ||DR, as well as to a certain metric “|| ∼ ||Tch” de-
fined by considering discrete Tchebycheff polynomials scaled by
a factor of d in the derivatives of the theta functions ∈ (fS)∗(L|E) =
F 1((fS)∗(L|

E
†
[d]

)<d). These discrete Tchebycheff polynomials are dis-

crete versions of the Legendre polynomials, and in fact, if we let d → ∞
with the said scaling by d, then the discrete Tchebycheff polynomials
converge uniformly to the Legendre polynomials.

(C.) The Binomial Model: This model involves the explicit q-expan-
sions (where we write E = Gm/qZ, and q is a holomorphic function
which is defined, at least locally, on S(C)) referred to in (3) above, which
are essentially binomial coefficient polynomials (scaled by 1) in
the derivatives of the theta functions ∈ (fS)∗(L|E) = F 1((fS)∗(L|

E
†
[d]

)<d).

If we divide these functions by appropriate powers of q, then the norm
|| ∼ ||qCG for which these functions divided by powers of q are or-
thonormal satisfies the following property: If d ≥ 12, and Im(τ) ≥
200{log2(d) + n · log(d) + n · log(n)} (where q = exp(2πiτ)), then:

n−1 · e−32d · || ∼ ||qCG ≤ || ∼ ||et ≤ e4d · || ∼ ||qCG

Here, the factor of n−1 that appears is the exact archimedean ana-
logue of the poles that appeared at finite primes in (2) above.

Finally, for each of these three models, the combinatorial/arithmetic portion of the
analytic torsion (i.e., the portion not arising from letting the elliptic curve E degenerate
– cf. (3) above for the portion arising from degeneration of the elliptic curve) induced on
(F r+1/F r)((fS)∗(L|

E
†
[d]

)<d) by the metrics || ∼ ||DR; || ∼ ||HMd
; || ∼ ||Tch; || ∼ ||w,μa

;

|| ∼ ||qCG (in their respective domains of applicability) as r → d, goes (modulo factors of
the order (constant)d) as

≈ (r!)−1 ≈ (d!)−1

which is precisely what you would expect by applying the product formula to the com-
putation of the “analytic torsion” in the finite prime case, which consists of a factor
of precisely (r!)−1 (cf. Chapter V, Theorem 3.1; Chapter VI, Theorem 4.1; Chapter VII,
Proposition 3.4).

As discussed in the statement of Theorem A, the key point of the archimedean portion
of Theorem A is the comparison of the étale and de Rham metrics || ∼ ||et, || ∼ ||DR.
Unfortunately, we are unable to prove a simple sharp result that they always coincide.
Instead, we choose three natural “domains of investigation” – which we refer to as models
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– where we compare these two metrics using a particular system of functions which are well-
adapted to the domain of investigation in question. One of the most important features of
these three models is that they each have natural scaling factors associated to them. The
three models, along with their natural scaling factors, and natural domains of applicability
are as follows:

Hermite Model (scaling factor = d
1
2 ) : nondegenerating E, fixed r < d

Legendre Model (scaling factor = d) : nondegenerating E, varying r < d

Binomial Model (scaling factor = 1) : degenerating E

It is interesting to observe that the exponents appearing in these scaling factors, i.e.,
0, 1

2 , 1, which we refer to as slopes, are precisely the same as the slopes that appear when
one considers the action of Frobenius on the crystalline cohomology of an elliptic curve
at a finite prime (cf. the discussions at the end of Chapter VII, §3, 6, for more on this
analogy).

If we write E = Gm/qZ, q = exp(2πiτ), then the Hermite Model (respectively, Leg-
endre Model, Binomial Model) corresponds to the case where/is most useful when Im(τ)
is fixed (respectively, → 0; → ∞). The Binomial Model is interesting in that it is the most
closely analogous to the situation at the finite primes. The Hermite model is interesting in
that it sheds light on the factors of q≈

1
8d ·j

2
– which are essentially Gaussians – that appear

in Theorem A, (3). Moreover, the Hermite model in some sense makes explicit that essen-
tially what we are doing throughout this entire paper is simply studying the derivatives of a
Gaussian/theta function. Finally, the Legendre model is interesting in that it shows how
the Comparison Isomorphism for general elliptic curves may be thought of as being essen-
tially a (more complicated) version of the Fundamental Combinatorial Model (cf. Chapter
VII, §3) given by considering integer-valued polynomial functions on a set of d points.

Our main technique for comparing the étale and de Rham metrics in these various
models is to reduce the problem to the computation of certain metrics on certain finite-
dimensional spaces of q-series. The q-series then tend to have the form:

q-series = “head” + “tail”

where

“head” = a function of the sort that appears in the “model”

while ∣∣∣ “tail”
∣∣∣ ≤ ε

(i.e., the tail is rather small compared to the head). Such estimates then show that the
behavior of the q-series is roughly the same as the behavior as the special functions of the
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“model.” This sort of analysis was already carried out for the Hermite Model, which is
technically the simplest of the three models, in Chapter VII, §6. The analogous analysis
for the Legendre Model (which is technically the next simplest of the three) is carried out
in §1,2, of the present Chapter. Finally, we carry out this analysis for the Binomial Model,
which is by far the most technically intricate of the three models, in §3,4,5, of the present
Chapter. In §6, we then relate these estimates to the analysis of the de Rham metric given
in Chapter VII, §4,5. Finally, in §7, we summarize everything in the form of the main
theorem.

In a word, the main point of this sort of “head + tail” estimate is to show that the
“tail” is small. The reason that the tail is small is, invariably, because it decays like a
Gaussian, since the q-series in question are essentially just derivatives of theta functions.
Unfortunately, however, because we are ultimately working with the L2-metric || ∼ ||et
defined by a discrete set of points (as opposed to, say, the L2-metric obtained by integrating
over the entire continuous elliptic curve in question), numerous technical difficulties arise.
These technical difficulties make the resulting analysis rather unpleasant, especially in the
case of the binomial model. Because of the cumbersome and unenlightening nature of this
analysis, we submit that the experienced mathematician may find it substantially easier
to work out the details for himself/herself than to wade through the lengthy estimates of
the present Chapter.

Also, we remark in passing, that although in Theorem A, we only give “qualitative
estimates” (e.g., of the form “(constant)d”), in fact, all the results that we derive involve
explicit estimates of the constants that appear. We refer to §6,7, for such explicit estimates.
Nevertheless, despite the fact that we made an effort to give such explicit estimates of
the constants that appear, we made no effort to give “best possible estimates” for these
constants. Thus, throughout the arguments of the present Chapter, the reader will often
note that the estimates tend to be rather weak, and that with very little extra effort,
one could give somewhat stronger estimates for these constants. Our aim here was not
to make any pretense of giving such strong estimates, but only to give estimates that are
representative of the essential technique involved.

Finally, we remark that although this “head + tail” technique has an unenlightening
technical side, it also admits the following intriguing philosophical interpretation. Namely,
the terms appearing in the q-series are naturally indexed by Z. Roughly speaking, the
terms that contribute to the head are those numbered 0, 1, . . . , N−1 (where N is a positive
integer). The remaining terms then naturally form deformations of the “head terms” in
the following fashion: The term numbered by j deforms the term numbered by the unique
Head(j) ∈ {0, . . . , N −1} such that Head(j) ≡ j modulo N . Thus, the fact that ultimately
only the “head terms” contribute significantly may thus be interpreted as the datum of the
map (from Z to {0, 1, . . . , N − 1})

j �→ Head(j)

in the language of function-theory. Put another way, it may be regarded as a function-
theoretic encoding of the splitting
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Z ∼= {0, 1, . . . , N − 1} × (N · Z)

(given by j �→ (Head(j), j − Head(j))).

This interpretation is interesting for the following reason: As explained in the Intro-
duction to the present paper, the Hodge-Arakelov Comparison Isomorphism was originally
envisioned as a sort of Hodge theory-type comparison theorem between de Rham and
étale/singular cohomology, in the context of Arakelov theory. By analogy with the case
of a geometric base (as opposed to, say, a number field as base) for the elliptic curve in
question, such a comparison should result in some sort of Kodaira-Spencer map, i.e., a
map from the tangent vectors of the base to tangent vectors of the moduli stack of elliptic
curves (cf. the Introduction). Thus, in particular, this sort of comparison theorem should
have something to do with absolute differentials of Z, i.e., with the point of view that Z
contains some sort of “absolute field of constants F1” over which it acts like a polynomial
algebra:

“Z ∼= F1[t]”

But now note that this formula “Z ∼= F1[t]” is strikingly reminiscent of the decomposition
“Z ∼= {0, 1, . . . , N − 1} × (N · Z)” that appeared above. Thus, in summary, it is as if the
“head + tail” approach is a sort of appeal to the notion Z ∼= F1[t] encoded in function-
theoretic language.

In fact, it is tempting to take this analogy a step further as follows: The “fundamental
symmetries” of a polarized elliptic curve are controlled by the “theta group” and its anal-
ogous Lie algebra version (cf. Chapter VII, §4). Moreover, this sort of algebraic structure
is exactly what noncommutative geometers refer to as a noncommutative torus. Thus, it is
as if the mathematics of the Hodge-Arakelov Comparison Isomorphism is trying to assert
that:

The symmetries/twist inherent in the inclusion “F1 ⊆ Z” are precisely
the symmetries/twist described by the structure known as a noncommu-
tative torus.

It is the hope of the author that some day future research will allow one to make these
ideas more rigorous.
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§1. Averages of Metrics

In this §, we discuss certain metrics on the space of functions on S1 obtained by
averaging the usual L2-metrics obtained by restricting these functions to translates of a
fixed finite subgroup of S1. These metrics will play an important role in the theory of §2.

We would like to begin by discussing the Hilbert space L2(S1) equipped with the
standard inner product:

(f, g) def=
1
2π

·
∫
S1

f · g

We shall write U
def= exp(2πit) (where t ∈ [0, 2π)) for the standard coordinate on S1. Thus,

any element f ∈ L2(S1) may be written in the form

f =
∑
k∈Z

ck · Uk

(where ck ∈ C). Then L2-norm of such an f is then given by

||f ||2 def=
∑
k∈Z

|ck|2

Let us write C∞(S1) ⊆ L2(S1) for the subspace of smooth functions on S1.

Now let us suppose that we are also given two positive integers d, a. Write d̃
def= d · a.

Suppose that we are also given positive real numbers (“weights”) w0, . . . , wd−1. If φ =∑d−1
k=0 γk · Uk (where γk ∈ C) is a function on μd (⊆ S1), then we would like to consider

the norm

||φ||2w
def=

1
d
·

d−1∑
k=0

wk · |γk|2

on L2(μd). Thus, for smooth functions f =
∑

k∈Z ck · Uk ∈ C∞(S1), we have:

||f ||2w
def= ||(f |μd

)||2w =
1
d
·

d−1∑
k=0

wk ·
∣∣∣ ∑

k′∈k+d·Z
ck′

∣∣∣2

Moreover, if α ∈ S1, then we may translate || ∼ ||w as follows:

||(Tα(f)|μd
)||2w =

1
d
·

d−1∑
k=0

wk ·
∣∣∣ ∑

k′∈k+d·Z
ck′ · αk′

∣∣∣2
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(where Tα(f)(U) def= f(α · U)). Note that ||(Tα(f)|μd
)||2w only depends on the image of α

in S1/μd. Thus, if we write αμ for the image of α in S1/μd, it makes sense to define

||f ||2w,αμ
def= ||(Tα(f)|μd

)||2w

Now we have the following result:

Proposition 1.1. For smooth functions f =
∑

k∈Z ck · Uk ∈ C∞(S1), we have:

||f ||2w,μa

def=
1
a
·
∑

αμ∈μa

||f ||2w,αμ

=
1
d
·

d−1∑
k=0

wk ·
a−1∑
k′=0

∣∣∣ ∑
k′′∈k+d·k′+d̃·Z

ck′′

∣∣∣2 ≥ 1
d
·

d−1∑
k=0

wk ·
∣∣∣ ∑

k′∈k+d̃·Z

ck′

∣∣∣2

(where we regard μa = μ
d̃
/μd ⊆ S1/μd).

Proof. Indeed, from the definitions, we have:

1
a
·
∑

αμ∈μa

||f ||2w,αμ =
1
a
·
∑

αμ∈μa

1
d
·

d−1∑
k=0

wk ·
∣∣∣ ∑

k′∈k+d·Z
ck′ · αk′

∣∣∣2

=
1
a
·
∑

αμ∈μa

1
d
·

d−1∑
k=0

wk ·
∣∣∣ a−1∑

k′=0

∑
k′′∈k+d·k′+d̃·Z

ck′′ · αk′′
∣∣∣2

=
1
a
·
∑

αμ∈μa

1
d
·

d−1∑
k=0

wk ·
∣∣∣ a−1∑

k′=0

αd·k′
∑

k′′∈k+d·k′+d̃·Z

ck′′

∣∣∣2

(where α ∈ S1 denotes any element that maps to αμ ∈ S1/μd). Thus, (readjusting the
notation) we see that it suffices to prove that if λ0, . . . , λa−1 ∈ C, then

1
a
·
∑

α∈μa

∣∣∣ a−1∑
k=0

αk · λk

∣∣∣2 =
a−1∑
k=0

∣∣∣λk

∣∣∣2

To prove this, it suffices to observe that
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∣∣∣ a−1∑
k=0

αk · λk

∣∣∣2 =
( a−1∑

k=0

αk · λk

)( a−1∑
j=0

α−j · λj

)

=
a−1∑
k=0

a−1∑
j=0

αk−j · λk · λj

(where λj denotes the complex conjugate of λj). But if we average over α ∈ μa in this
last sum, we see that the only terms that survive are those for which k = j. Moreover, the

sum of these terms is precisely
∑a−1

k=0

∣∣∣λk

∣∣∣2, as desired. ©

§2. The Legendre Model

In this §, we study the space of canonical SW zeta functions equipped with a certain
natural metric, arising from restriction to torsion points. In particular, we show that when
equipped with this metric, the space of canonical SW zeta functions becomes “approxi-
mately isomorphic” to the space of discrete Tchebycheff polynomials studied in Chapter
VII, §3.

We begin by making certain estimates, based on the estimates of Chapter VII, Lemma
6.1. In the following discussion, we use the notation of Chapter VII, §6; also, we assume
(for simplicity) that d ≥ 2. First, we recall the theta function Θχ

∑
k∈Z

q
1
2 ·k

2+(iχ/n)·k
sc · U2mk+iχ

cv · χ(ket) =
∑
k∈Z

q
1
d ( 1

2 ·k
2+(iχ/n)·k)

or · U2mk+iχ
cv · χ(ket)

In Chapter VII, §6, we also considered the derivatives

ζSS
r

def=
(δ∗χ

d

)r

(Θχ) =
∑
k∈Z

(k

d

)r

· q
1
d ( 1

2 ·k
2+(iχ/n)·k)

or · U2mk+iχ
cv · χ(ket)

where (to simplify the notation) we omit the “·θ−m” in the definition of ζSS
r .

To prepare for the discussion below, we would like to introduce various objects related
to the coefficients of this expansion. If we think of the integers 0, . . . , d− 1 as representing
the elements of Z/dZ, then for j = 0, . . . , d − 1, let us write

ej
def= Min

{1
2
· k2 + (iχ/n) · k)

}
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(where the minimum is over k such that k ≡ j modulo d) and wj
def= |qsc|−2·ej ≥ 1. Next,

recall the linear function “Ld(T ) = T +λd − iχ

2m” of Chapter V, Theorem 4.8. Let us write

ld
def=

λd

d

Thus, 0 ≤ ld ≤ 1
2 (since d ≥ 2). It is easy to check that λd has the following property (cf.

the proof of Chapter V, Theorem 4.8): the minimum appearing in the definition of ej is
attained for any k such that 0 ≤ k + λd ≤ d − 1. Let us write

KCrit
def= {0 − λd, 1 − λd, . . . , d − 1 − λd}

for the set of such “critical” k. It thus follows that ej is attained for some k satisfying
|k| ≤ d. In particular, it follows that 2|ej | ≤ |k2 + (iχ/m) · k| ≤ 3

2 · d2, hence that

0 ≤ log(wj) ≤ 3π · Im(τor) · d ≤ 6(1 + ε)Q · d

(in the notation of Chapter VII, Lemma 6.1, (2)). Thus, if, for instance, one is considering
a situation in which Im(τor) varies in a compact subset of the upper half-plane, then it
follows that on that compact subset, wj is bounded above and below by constants Cd

1 , Cd
2 ,

where C1, C2 ∈ R>0 depend only on the compact set.

Now that w0, . . . , wd−1 have been defined, we may apply the theory of §1. In particu-
lar, if we fix a positive integer a ≥ 2, then it follows from Proposition 1.1 that for smooth
functions f =

∑
k∈Z φk · Uk ∈ C∞((S1)sc), we have the following “averaged” L2-norm:

||f ||2w,μa

def=
1
d
·

d−1∑
j=0

wj ·
a−1∑
j′=0

∣∣∣ ∑
k∈j+d·j′+d̃·Z

φk

∣∣∣2

In this §, we would like to consider two related norms:

||f ||2Tchε

def=
1
d
·
∑

j∈KCrit

wj ·
∣∣∣ ∑

k∈j+d̃·Z

φk

∣∣∣2 ≤ ||f ||2w,μa

(where, for j < 0 or > d−1, wj is defined as wj′ for the unique j′ ∈ {0, . . . , d−1} such that
j′ ≡ j; and the inequality follows from the fact that ||f ||2Tchε

is defined to be the sum of a
subset of the same collection of nonnegative numbers whose sum constitutes the definition
of ||f ||2w,μa

) and

||f ||2Tch
def=

1
d
·
∑

j∈KCrit

wj ·
∣∣∣φj

∣∣∣2
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In fact, in the following discussion, we would like to consider functions f ∈ C∞((S1)cv)
which are of the form f1 · U iχ

cv , for some f1 ∈ C∞((S1)sc). For such f , we write ||f ||?? def=
||f1||??, where ??= w,μa; Tchε; or Tch.

Next, let us observe that when f = Θχ, then it follows from the above discussion
concerning ld that the resulting “φj” satisfy wj · |φj |2 = 1, for j ∈ KCrit. Similarly, if δ∗χ
is the differential operator of Chapter VII, §6, and P (−) is a polynomial with complex
coefficients, then

||P (δ∗χ) · Θχ||2Tch =
1
d
·
∑

j∈KCrit

∣∣∣P (j)
∣∣∣2

that is to say, the expression on the right-hand side of this equation is essentially (i.e.,
up to a factor of 1

d in front, and a shift in the variable j by the number λd of Chapter
V, Theorem 4.8) the (squared) L2-norm || ∼ ||2 considered in our discussion of discrete
Tchebycheff polynomials (Chapter VII, §3). In the following, we would like to show that
in the situation that we are interested in, the norms subscripted w,μa; Tchε; and Tch are
very close to another and hence that the theory of orthogonal functions with respect to the
w,μa-norm is very close to the theory of discrete Tchebycheff polynomials of Chapter VII,
§3.

This observation motivates the following definitions: First, we introduce some inde-
terminates

t def=
T

d
; s def= t + ld

Thus, as T ranges over KCrit, s ranges over 0, 1
d , . . . , d−1

d . In particular, we have

||P (δ∗χ) · Θχ||2Tch =
1
d
·
∑

j∈KCrit

∣∣∣P (−)|T=j

∣∣∣2 =
1
d
·

d−1∑
j=0

∣∣∣P (j)|s= j
d

∣∣∣2

This makes the relationship between the norms considered here and the norms of Chapter
VII, §3, explicit. Recall that the “normalized discrete Tchebycheff polynomials” t̃r(s) of
Chapter VII, Proposition 3.2, are orthonormal with respect to the (square L2-) norm

Q(s) �→ 1
d ·∑d−1

j=0

∣∣∣Q( j
d )
∣∣∣2. Now we define the (discrete) Tchebycheff canonical SW zeta

functions as follows:

ζTCH
r

def= t̃r(
δ∗χ
d

+ ld) · (Θχ) =
∑
k∈Z

t̃r(
k

d
+ ld) · q

1
d ( 1

2 ·k
2+(iχ/n)·k)

or · U2mk+iχ
cv · χ(ket)
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where 0 ≤ r ≤ d−1, t̃r(s) is the “normalized discrete Tchebycheff polynomial” of Chapter
VII, Proposition 3.2. Thus,

The ζTCH
r are orthonormal with respect to the inner product defined by

|| ∼ ||Tch.

Now we would like to estimate the difference between the various norms defined above:

Lemma 2.1. Let A be an integer which satisfies A ≥ Max(a, 1 + Q−1), where Q
def=

π
4 · Im(τor). Then we have:

||P (δ∗χ) · Θχ||Tchε
≤ ||P (δ∗χ) · Θχ||w,μa

≤ (r + 1)
9
2 · e4r+4 · A2r+1 · ||P (δ∗χ) · Θχ||Tch

for any polynomial with complex coefficients P (−) of degree ≤ r < d.

Proof. The first inequality was already noted in the discussion above. Thus, let us prove
the second inequality. We may assume without loss of generality that ||P (δ∗χ) ·Θχ||2Tch = 1.
Thus, it follows from the above discussion that

P (T ) =
r∑

j=0

γj · t̃j(t + ld)

where γj ∈ C,
∑r

j=0 |γj |2 = 1.

Next, we would like to bound the coefficients of P (T ) as a polynomial in t. To do this,
first we observe that the coefficients of t̃j(−) (for j ≤ r) may be bounded by (2r+1)

1
2 ·e3r+1

(by Chapter VII, Proposition 3.2, (ii.)). Moreover, if one expands (t+ ld)j (for j ≤ r) as a
polynomial in t, the absolute values of the coefficients are bounded by

(
j
j′
)
· |ld|j

′ ≤ 2j ≤ 2r

(where 0 ≤ j′ ≤ j, and we note that |ld| ≤ 1
2 ). Since (t+ ld)j (for j ≤ r) has ≤ r +1 terms

as a polynomial in t, it thus follows that as a polynomial in t, t̃j(t + ld) has coefficients of
absolute value ≤ (r + 1)

5
2 · e3r+2 · 2r ≤ (r + 1)

5
2 · e4r+2. Since |γj | ≤ 1 (for j ≤ r), we thus

obtain that as a polynomial in t, P (T ) = P (t + ld) has coefficients of absolute value

≤ (r + 1)
7
2 · e4r+2

Thus, we obtain

||P (δ∗χ) · Θχ||w,μa
≤ (r + 1)

7
2 · e4r+2 ·

r∑
j=0

||
(δ∗χ

d

)j

· Θχ||w,μa

≤ (r + 1)
7
2 · e4r+2 ·

r∑
j=0

||ζSS
j ||w,μa
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On the other hand, the terms ||ζSS
j ||w,μa

may be bounded by what was already done in
Chapter VII, Lemma 6.1, as follows. To simplify the notation (more precisely, to free up
the letter “j” for use in future summations), we consider the case j = r. When j < r, a
similar argument applies. Now recall the general formula:

||f ||2w,μa
=

1
d
·

d−1∑
j=0

wj ·
a−1∑
j′=0

∣∣∣ ∑
k∈j+d·j′+d̃·Z

φk

∣∣∣2

In the case of f = ζSS
r , we would like to divide up the task of bounding the |φk| into two

cases, the case where |k| < A · d, and the case where |k| ≥ A · d:

Case (i): First, we consider the case where |k| < A · d. In this case, it
follows from Chapter VII, Lemma 6.1, (1), (plus the definition of wk)
that wj · |φk|2 ≤ A2r. Note that the number of k in a given residue class
modulo d̃ = a · d that fall under the present Case (i) is ≤ 2 · A · a−1.

Case (ii): Next, we consider the case where |k| ≥ A · d. Let k0 denote
the unique integer ∈ KCrit such that k ≡ k0 modulo d. Let σk be
the sign of k, i.e., 1 (respectively, −1) if k is > 0 (respectively, < 0).
Write kδ

def= σk · (|k| − |k0|). Note that since |k0| ≤ d, we obtain that
|kδ| ≥ (A − 1) · d ≥ 1 (since A ≥ 2). Thus,

(k2 + (iχ/m) · k) − (k2
0 + (iχ/m) · k0) = (|k0| + |kδ|)2 − k2

0 + (iχ/m) · (kδ + k − k0 − kδ)

= k2
δ + (iχ/m) · kδ + 2 · |k0| · |kδ| + (iχ/m) · (σk · |k0| − k0)

≥ k2
δ + (iχ/m) · kδ + 2 · |k0| · (|kδ| − 1)

≥ k2
δ + (iχ/m) · kδ

But note that, if we raise these inequalities to the base qsc, we obtain
that

wj · |φk|2 = wk0 · |φk|2 ≤
( |k|
|kδ|
)2r

· |φkδ
|2

≤
( A

A − 1

)2r

· |φkδ
|2 ≤ 4r · |φkδ

|2

Thus, by Chapter VII, Lemma 6.1, if A−1 ≥ Q−1, where Q
def= π

4 ·Im(τor)
(and we take “b,” “ε” in loc. cit. to be 1; “a” in loc. cit. to be A − 1;
“k” in loc. cit. to be kδ), then∑

|k|≥A·d
w

1
2
j · |φk| ≤ 2r+2 · e−(A−1)·d ≤ 2d+2 · e−(A−1)·d

≤ 4 · e−(A−2)·d ≤ 4
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If we then add up the contributions from these two cases, we obtain

1
d
·

d−1∑
j=0

wj ·
a−1∑
j′=0

∣∣∣ ∑
k∈j+d·j′+d̃·Z

φk

∣∣∣2 ≤ 1
d
·

d−1∑
j=0

a−1∑
j′=0

( ∑
k∈j+d·j′+d̃·Z

w
1
2
j ·
∣∣∣φk

∣∣∣)2

≤ 1
d
·

d−1∑
j=0

a−1∑
j′=0

(
2 · A · a−1 · A2r + 4

)2

≤ a ·
(
6 · a−1 · A2r+1

)2

≤
(
6 · A2r+1

)2

(where we use that A ≥ a in the third inequality). Thus, we have ||ζSS
r ||w,μa

≤ 6 · A2r+1.
Combining this with the previous inequalities concerning ||P (δ∗χ)·Θχ||2w,μa

, we thus obtain

||P (δ∗χ) · Θχ||w,μa
≤ (r + 1)

9
2 · e4r+2 · 6 · A2r+1 ≤ (r + 1)

9
2 · e4r+4 · A2r+1

as desired. ©

Next, we would like to compare || ∼ ||Tchε
and || ∼ ||Tch.

Lemma 2.2. Suppose that a ≥ Max(2+Q−1, 8), where Q
def= π

4 · Im(τor). Then we have:{
1−(d+1)

9
2 ·e4−d

}
·||P (δ∗χ)·Θχ||Tch ≤ ||P (δ∗χ)·Θχ||Tchε

≤
{

1+(d+1)
9
2 ·e4−d

}
·||P (δ∗χ)·Θχ||Tch

for any polynomial with complex coefficients P (−) of degree ≤ r < d. Here, the first
expression in large brackets, i.e., 1 − (d + 1)

9
2 · e4−d, is ≥ 1

2 if d ≥ 25.

Proof. The argument is similar to the argument given for “Case (ii)” in the proof of
Lemma 2.1 (except that we take “A” to be a− 1). Indeed, the difference between the two
norms

||f ||2Tchε

def=
1
d
·
∑

j∈KCrit

wj ·
∣∣∣ ∑

k∈j+d̃·Z

φk

∣∣∣2; and ||f ||2Tch
def=

1
d
·
∑

j∈KCrit

wj ·
∣∣∣φj

∣∣∣2

is that the sum in the definition of ||f ||2Tchε
involves the φk for k ∈ (KCrit + d̃ · Z)\KCrit,

i.e., (by the triangle inequality)
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(||f ||Tchε
− ||f ||Tch)2 ≤ ||f ||2TchΔ

def=
1
d
·
∑

j∈KCrit

wj ·
∣∣∣ ∑

k∈(j+d̃·Z)\{j}

φk

∣∣∣2

Just as in the proof of Lemma 2.1, we may assume without loss of generality that ||P (δ∗χ) ·
Θχ||2Tch = 1. This implies (just as in the proof of Lemma 2.1) that the coefficients of P (−)
have absolute value ≤ (r + 1)

7
2 · e4r+2, hence that

||P (δ∗χ) · Θχ||TchΔ ≤ (r + 1)
7
2 · e4r+2 ·

r∑
j=0

||ζSS
j ||TchΔ

Thus, it suffices to bound ||ζSS
r ||TchΔ . But (as remarked at the beginning of this proof)

this was essentially already done in “Case (ii)” of the proof of Lemma 2.1. More precisely,
let k0 ∈ KCrit, k ≡ k0 modulo d̃; assume, moreover, that k /∈ KCrit. We would like to
consider the coefficient φk in the expansion of f = ζSS

r . Note that since |k0| ≤ d, k �∈ KCrit,
it follows that |k| ≥ d̃− d = (a− 1)d. Thus, if we substitute a− 1 (≥ 1 + Q−1) for “A” in
the treatment of Case (ii) in the proof of Lemma 2.1, we obtain

∑
|k|≥(a−1)·d

w
1
2
k0

· |φk| ≤ 4 · e−(a−3)·d

hence

||ζSS
r ||2TchΔ

=
1
d
·
∑

k0∈KCrit

wk0 ·
∣∣∣ ∑

k∈(k0+d̃·Z)\{k0}

φk

∣∣∣2

≤ 1
d
·
∑

k0∈KCrit

16 · e−2(a−3)·d = 16 · e−2(a−3)·d

Thus, we have

||P (δ∗χ) · Θχ||TchΔ ≤ (r + 1)
9
2 · e4r+2 · 4 · e−(a−3)·d

≤ (d + 1)
9
2 · e4 · e−(a−7)·d ≤ (d + 1)

9
2 · e4−d

(where in the last inequality we use that a ≥ 8). Moreover, (d + 1)
9
2 · e4−d ≤ 1

2 if d ≥ 25.
This completes the proof. ©

We are now ready to state the main result of this §:

Theorem 2.3. Let Hd
χ be the vector space of functions on S1 of the form P (δ∗χ) · Θχ,

where P (−) is a polynomial of degree < d with complex coefficients, and Θχ and δ∗χ are as
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defined in Chapter VII, §6. For r ∈ Z, let F r(Hd
χ) ⊆ Hd

χ be the subspace of such functions
for which the degree of P (−) is ≤ r (cf. the notation of Chapter VII, §1). Let a ≥ 8 be
an integer. Let || ∼ ||w,μa

be the L2-norm on Hd
χ given by averaging the L2-norms on

α ·μd ⊆ (S1)sc with weights w0, . . . , wd−1 (as defined at the beginning of this §) as α varies
in μa·d/μd (see the above discussion for more details). Let || ∼ ||Tch be the L2-norm on
Hd

χ given by:

||P (δ∗χ) · Θχ||2Tch =
1
d
·

d−1∑
j=0

∣∣∣P (j − λd)
∣∣∣2

where ld is 1
d times the constant “λd” of Chapter V, Theorem 4.8.

Then as r varies over 0, . . . , d − 1, the functions

ζTCH
r

def= t̃r(
δ∗χ
d

+ld)·(Θχ) =
∑
k∈Z

t̃r(
k

d
+ld)·q

1
d ( 1

2 ·k
2+(iχ/n)·k)

or ·U2mk+iχ
cv ·χ(ket) ∈ F r(Hd

χ)

(where t̃r(−) is the “normalized discrete Tchebycheff polynomial” of Chapter VII, Propo-
sition 3.2) form an orthonormal basis of Hd

χ with respect to the inner product associated to

norm || ∼ ||Tch. Moreover, if a ≥ Max(2 + Q−1, 8) (where Q
def= π

4 · Im(τor) – cf. Chapter
VII, Lemma 6.1), and d ≥ 25, then we have

1
2
· ||P (δ∗χ) · Θχ||Tch ≤ ||P (δ∗χ) · Θχ||w,μa

≤ (r + 1)
9
2 · e4r+4 · a2r+1 · ||P (δ∗χ) · Θχ||Tch

In particular, if ζ
w,μa
0 , . . . , ζw,μa

d−1 form an orthonormal basis of Hd
χ with respect to the

inner product associated to || ∼ ||w,μa
, and we write ζ

w,μa
r =

∑r
j=0 γr,j · ζTCH

j , then∑r
j=0 |γr,j |2 ≤ 4, and

{
(r + 1)

9
2 · e4r+4 · a2r+1

}−1

≤ |γr,r| ≤ 2

Finally, if Im(τor) varies in a compact subset of the upper half-plane, then on that compact
subset, the wj are bounded above and below, i.e., there exist constants C1, C2 ∈ R>0

(depending only on the compact set) such that

Cd
1 · || ∼ ||1,μa

≤ || ∼ ||w,μa
≤ Cd

2 · || ∼ ||1,μa

where || ∼ ||1,μa
is the norm defined in the same way as || ∼ ||w,μa

except with all the
“weights” (i.e., “wj”) equal to 1.
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Proof. Most of the assertions of Theorem 2.3 have already been proven. Thus, it remains
only to check the following: The inequalities relating || ∼ ||w,μa

and || ∼ ||Tch follow
from Lemmas 2.1, 2.2 (where in Lemma 2.1, we take “A” to be a). The resulting bound∑r

j=0 |γr,j |2 ≤ 4 follows immediately. This implies |γr,r| ≤ 2. The lower bound for
|γr,r| results from the elementary geometry of Hilbert spaces, together with the inequality
bounding || ∼ ||w,μa

in terms of || ∼ ||Tch. ©

Remark. Thus, stated in words, Theorem 2.3 asserts the following:

Up to a factor of order Cr on the degree ≤ r portion of

Hd
χ = {P (δ∗χ) · Θχ | deg(P (−)) < d}

the L2-norm on Hd
χ given by averaging the L2-norms on the α · μd

(as α varies over μa·d/μa, and a ≥ 8, d ≥ 25 are sufficiently large)
with weights w0, . . . , wd−1 induces orthonormal polynomials which are
essentially the discrete Tchebycheff polynomials. Thus, as d → ∞, the
orthonormal polynomials for this averaged L2-norm are essentially the
Legendre polynomials (cf. Chapter VII, Propositions 2.1, 3.1). Moreover,
if the elliptic curve in question varies on a compact set, then, up to a
factor of order Cd, we may even assume that the weights (i.e., the “wj”)
are all equal to 1.

Stated in this way, we feel that this theorem justifies the terminology “Legendre model”
used in the title of this §. Also, note that, as expected, the Legendre limit involves a scaling
factor of d, i.e., this limit is a slope 1 limit – cf. the discussions at the end of Chapter VII,
§3, 6. Finally, we remark that that if, on the other hand, one fixes d and lets a → ∞, then
one verifies easily that the norm with weights equal to 1, i.e.,

||f ||21,μa
=

1
d
·

d−1∑
j=0

a−1∑
j′=0

∣∣∣ ∑
k∈j+d·j′+d̃·Z

φk

∣∣∣2

converges (up to a constant factor) to the usual L2-norm on L2(S1). Thus, in this limit,
the resulting orthonormal functions converge (up to a constant factor) to the orthogonal
canonical Schottky-Weierstrass zeta functions ζOR,S1

r of Chapter VII, Definition 6.3.
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§3. The Truncated Binomial Model

In this §, we discuss the analogue of the “truncated” (i.e., by comparison to || ∼ ||Tchε
,

|| ∼ ||w,μa
) norm || ∼ ||Tch of §2 for what we call the binomial model. In the case of the

Legendre model that we studied in §2, the truncated version was essentially isomorphic
to the system of discrete Tchebycheff polynomials (cf. Chapter VII, §3), which is already
well-known. In the present binomial case, however, the truncated version is not so well-
known, so we give an independent treatment in the present §. This will prepare us for the
following two §’s, in which we study the function space of derivatives of the theta function
by regarding it as a deformation of the truncated binomial model (cf. what we did in §2 –
i.e., we studied this same function space by regarding it as a deformation of the discrete
Tchebycheff polynomials).

We maintain the notation of §2. In this §, we would like to consider a filtration on the
set KCrit, defined as follows. Recall the function “Lr(T ) = T + λr − iχ/n” of Chapter V,
Theorem 4.8. Then we define (for r = 0, 1, . . . , d)

F r(KCrit)
def= {0 − λr, 1 − λr, . . . , r − 1 − λr}

Thus, F r(KCrit) has r elements; F 0(KCrit) = ∅; F d(KCrit) = KCrit. Moreover, one checks
easily from the definitions that (for r = 1, . . . , d) F r−1(KCrit) ⊆ F r(KCrit). Thus, for
r = 0, . . . , d − 1

F r+1(KCrit)\F r(KCrit)

consists of precisely one element, which we denote by k[r]. Moreover, the filtration
F r(KCrit) induces a total ordering “≤Crit” on the set KCrit defined by k ≤Crit k′ (for
k, k′ ∈ KCrit) if k′ ∈ F r(KCrit) =⇒ k ∈ F r(KCrit) (for all r = 1, . . . , d). Put another way,

k[r1] ≤Crit k[r2] ⇐⇒ r1 ≤ r2

When the chosen character belongs to Case I (respectively, Case II; Case III), and r is
even (respectively, odd; either even or odd) F r(KCrit) is the set of exponents of “U” (cf.
Chapter V, Schola 4.1) of the first r special monomials considered in Chapter V, Schola
4.1, where “first” is relative to the ordering induced by the exponent of q.

Stated in a word, the purpose of the present and the next two §’s, is to study the
congruence canonical SW zeta functions (cf. Chapter V, Theorem 4.8)

ζCG
r

def=
(

Lr(δ∗)
r

)
(ζCG

0 ) =
∑
k∈Z

(
k + λr

r

)
· q

1
2 ·k

2+(iχ/n)·k
sc · U2mk+iχ

cv · χ(ket)
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at the infinite prime (where, for simplicity, we omit mention of the “trivialization” θm).
In the present §, we would like to consider the following truncated versions of the ζCG

r :

ZCG
r

def= q
− 1

2 ·k[r]2−(iχ/n)·k[r]
sc ·

∑
k∈KCrit

(
k + λr

r

)
· q

1
2 ·k

2+(iχ/n)·k
sc · Uk

sc · χ(ket)

where Un
cv = Usc (note that we also divide by the unnecessary factor of U

iχ
cv ). Note that

the only nonzero terms of this sum over KCrit are those for which k /∈ F r(KCrit). Thus,
the exponents of qsc are all nonnegative. In the following discussion, we shall write

Ψ(k) def=
1
2
· k2 +

iχ
n

k

for the function of k appearing in the exponent of qsc. In this §, we would like to think of
the space of linear combinations of the ZCG

r as equipped with the usual L2-norm || ∼ ||
on (S1)sc (i.e., the norm for which the Uk

sc (k ∈ Z) form an orthonormal system – cf. §1).

The purpose of the present § is to consider the following problem: Let

Z
def=

d−1∑
r=0

γr · ZCG
r

be a C-linear combination (i.e., the γr ∈ C) of the ZCG
r .

Suppose that ||Z|| = 1. Then to what extent can one bound the gr
def=

|γr|?

Since ||Z|| = 1, and the Uk
sc (k ∈ Z) form an orthonormal system, it follows that the coef-

ficients of the Uk
sc (in the “Fourier expansion” of Z) are ≤ 1. In particular, the coefficient

of U
k[r]
sc is ≤ 1, hence:

∣∣∣ r∑
j=0

γj ·
(

k[r] + λj

j

)
· qΨ(k[r])−Ψ(k[j])

sc · χ(k[r]et)
∣∣∣ ≤ 1

Thus, if we write

C[r, j] def=
(

k[r] + λj

j

)
· |qsc|Ψ(k[r])−Ψ(k[j])

then we obtain
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gr ≤ 1 +
r−1∑
r1=0

C[r, r1] · gr1

(so in particular, g0 ≤ 1). If we then substitute into this last inequality the analogous
inequality for gr1 , we obtain

gr ≤ 1 +
∑

r>r1≥0

C[r, r1] +
∑

r>r1>r2≥0

C[r, r1] · C[r1, r2] · gr2

Continuing in this fashion, we obtain

gr ≤ 1 +
r∑

j=1

∑
r>r1>r2>...>rj≥0

C[r, r1] · C[r1, r2] · . . . · C[rj−1, rj ]

(where we use that g0 ≤ 1, and that if r > r1 > . . . > rj ≥ 0, then j ≤ r). Next,
we would like to analyze this double summation in more detail. First, we would like to
estimate the number of terms appearing in this summation. By using the transformation
(r1, r2, . . . , rj) �→ (r− r1, r1 − r2, r2 − r3, . . . , rj−1 − rj), one verifies easily that the number
of terms in this double summation is ≤ the coefficient of tr in the power series (1 − t)−r

(where t is an indeterminate). By taking the r-th derivative of (1− t)−r (and dividing by
r!), we obtain that this coefficient is equal to

(
2r−1

r

)
≤ 22r−1 ≤ 4r − 1. Thus, we obtain

that

The number of terms in the double summation above is ≤ 4r − 1.

Next, we would like to bound the C[r, r′]’s (where r′ < r). This consists of two parts,
i.e., bounding the binomial coefficient portion of C[r, r′], and bounding the power of |qsc|
appearing in C[r, r′].

Let us begin with the binomial coefficient portion, i.e.,

(
k[r] + λr′

r′

)

of C[r, r′], where 0 ≤ r′ < r ≤ d − 1. First, let us observe that k[r′ − 1] + λr′ is either
0 or r′ − 1. Now one may check easily from the definitions that the interval of integers
F r+1(KCrit) is obtained from interval of integers F r(KCrit) by adjoining one more integer
to F r(KCrit), where this last integer lies either immediately to the left or immediately to
the right of F r(KCrit). Moreover, whether this last integers lies to the left or to the right
depends only on the parity of r, i.e., as r increases, “left” and “right” occur alternately,
one after the other. Thus, it follows that k[r] + λr′ is either ∈ {− 1

2 (r − r′ + 2), . . . ,−1}
or ∈ {r′, . . . , r′ − 1 + 1

2 (r − r′ + 2)}. But this implies that |
(
k[r]+λr′

r′
)
| is ≤ a product of
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1
2 (r − r′ + 2) ≤ 2(r − r′) positive integers, each of which is ≤ r′ − 1 + 1

2 (r − r′ + 2) =
1
2 (r + r′) ≤ r. Thus, we obtain that:

The binomial coefficient portion of C[r, r′] is ≤ r2(r−r′). In particular,
the binomial coefficient portion of the term

C[r, r1] · C[r1, r2] · . . . · C[rj−1, rj ]

in the double summation above is ≤ r2{(r−r1)+(r1−r2)+...+(rj−1−rj)} ≤
r2(r−rj).

Next, we would like to bound the power of |qsc|, i.e.,

|qsc|Ψ(k[r])−Ψ(k[r′])

appearing in C[r, r′] (where 0 ≤ r′ < r ≤ d− 1). Since |qsc| < 1, this means that we would
like to bound Ψ(k[r])−Ψ(k[r′]) from below. Note that we always have Ψ(k[r])−Ψ(k[r′]) ≥ 0.
In the following, we would like to obtain a stronger bound from below under the assumption
that r ≥ r′ + 6.

Lemma 3.1. Suppose that r′ + 6 ≤ r. Then Ψ(k[r]) − Ψ(k[r′]) ≥ 1
16 (r + r′)(r − r′).

Proof. The proof consists of a case by case analysis, depending on which of the three
Cases I, II, III of Chapter V, Schola 4.1, the character χ belong to.

We begin with Case I. In this Case, r may be written as 2k or 2k + 1 (where k ≥ 0 is
an integer). Then Ψ(k[r]) = 1

2 (k2 + k) (cf. Chapter V, Schola 4.1). Let us write k′ for the
“k” associated to r′. Then

Ψ(k[r]) − Ψ(k[r′])
r − r′

=
{ k − k′

2(r − r′)

}
· (k + k′ + 1) ≥

{r − 1 − r′

4(r − r′)

}
·
(r + r′

2

)
≥
{ r − r′

8(r − r′)

}
·
(r + r′

2

)
=

1
16

(r + r′)

as desired.

Next, we consider Case II. In this Case, r may be written as 2k or 2k−1 (where k ≥ 0
is an integer). Then Ψ(k[r]) = 1

2 · k2 (cf. Chapter V, Schola 4.1). Let us write k′ for the
“k” associated to r′. Then
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Ψ(k[r]) − Ψ(k[r′])
r − r′

=
{ k − k′

2(r − r′)

}
· (k + k′) ≥

{r − 1 − r′

4(r − r′)

}
·
(r + r′

2

)
≥
{ r − r′

8(r − r′)

}
·
(r + r′

2

)
=

1
16

(r + r′)

as desired.

Finally, we consider Case III. In this Case, r may be written as 2k or 2k − 1 (where
k ≥ 0 is an integer). Then Ψ(k[r]) is ≥ 1

2 (k2 − k), ≤ 1
2 (k2 + k) (cf. Chapter V, Schola

4.1). Let us write k′ for the “k” associated to r′. Note that since r ≥ r′ + 6, we have
r − r′ − 3 ≥ 1

2 · (r − r′), k ≥ k′ + 2. Thus,

Ψ(k[r]) − Ψ(k[r′])
r − r′

≥
{k − k′ − 1

2(r − r′)

}
·
(k2 − k − (k′)2 − k′

k − k′ − 1

)
≥
{r − r′ − 3

4(r − r′)

}
· (k + k′)

≥
{ r − r′

8(r − r′)

}
·
(r + r′

2

)
=

1
16

(r + r′)

as desired. ©

Thus, in particular, it follows that

The power of |qsc| appearing in the term C[r, r1]·C[r1, r2]·. . . ·C[rj−1, rj ]
in the double summation above is

={Ψ(k[r]) − Ψ(k[r1])} + {Ψ(k[r1]) − Ψ(k[r2])}+
. . . + {Ψ(k[rj−1]) − Ψ(k[rj ])}

=Ψ(k[r]) − Ψ(k[rj ])

which is ≥ 0 always and ≥ 1
16 (r + rj)(r − rj) if r ≥ rj + 6.

Lemma 3.2. We have

r ·
{
log(r) − 2r ·

( log2(d)
d

)}
≤ 12 · d

for any integer r satisfying 0 ≤ r ≤ d.

Proof. Lemma 3.2 is clear if r = 0, 1, 2 (note that if r = 1, 2, then the expression in
brackets {, } is ≤ 1), or if r = d. Thus, we may assume that r ≥ 3 (so, in particular,
d ≥ 3). Write
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f(r) def= r ·
{

log(r) − 2r ·
( log2(d)

d

)}

Since we have checked that f(r) ≤ 12 · d for r = 2, d, it suffices (by elementary calculus)
to show that f(ρ) ≤ 12 · d for any real number ρ ∈ [2, d] such that f ′(ρ) = 0. For such a
ρ, we have

3 · log(ρ) ≥ log(ρ) + 1 = 4ρ ·
( log2(d)

d

)

(where we use that ρ ≥ 2 implies 2 · log(ρ) ≥ log(4) ≥ 1) hence

f(ρ) = ρ ·
{

log(ρ) − 1
2
· (log(ρ) + 1)

}
≤ 1

2
· ρ · log(ρ)

Next, let us apply the function log2(−) to both sides of the inequality 3d
4·log2(d)

≥ ρ
log(ρ) (≥

1). Since both sides of this equality are ≥ 1, it thus follows that we obtain an inequality

log2(d) ≥ log2
{ 3d

4 · log2(d)

}
≥ log2

( ρ

log(ρ)

)
≥ 1

16
· log2(ρ)

(where we use that log(d) ≥ 1 (since d ≥ 3), and ρ
log(ρ) ≥ ρ

1
4 (since ρ ≥ 2)). If we then

multiply the inequality log2(d) ≥ 1
16 · log2(ρ) by 3d

4·log2(d)
≥ ρ

log(ρ) , we thus obtain

3
4
· d ≥ log2(d) · 3d

4 · log2(d)
≥ 1

16
· log2(ρ) · ρ

log(ρ)
=

1
16

· ρ · log(ρ)

i.e., f(ρ) ≤ ρ · log(ρ) ≤ 12 · d, as desired. ©

Now let us return to the inequality

gr ≤ 1 +
r∑

j=1

∑
r>r1>r2>...>rj≥0

C[r, r1] · C[r1, r2] · . . . · C[rj−1, rj ]

Suppose that qsc satisfies:

−log|qsc| = 2π · 1
d
· Im(τor) ≥

64 · log2(d)
d

Then by what we have done above (cf. especially Lemmas 3.1, 3.2), each term in the
double summation satisfies:
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log(C[r, r1] · C[r1, r2] · . . . · C[rj−1, rj ]) ≤ 2(r − rj) · log(r) +
1
16

· (r + rj)(r − rj) · log|qsc|

≤ 2(r − rj) · (log(r) +
1
32

· r · log|qsc|)

≤ 2(r − rj) · (log(r) − 2 · r · d−1 · log2(d))

≤ 2(r − rj) · 12 · d

r
≤ 24 · d

when r ≥ rj + 6 and

log(C[r, r1] · C[r1, r2] · . . . · C[rj−1, rj ]) ≤ 2(r − rj) · log(r) ≤ 12 · log(r) ≤ 12 · log(d)

otherwise. Thus, since (as we saw above) there are 4r − 1 such terms in the above double
summation, (if we add in the additional “1+” at the beginning, so that we get a total of
4r terms, then) it follows that

gr ≤ 4r · e24·d ≤ e26·d

Now we are ready to state the main result of the present §:

Theorem 3.3. Suppose that

Im(τor) ≥
32
π

· log2(d)

and let Z
def=
∑d−1

r=0 γr · ZCG
r be a C-linear combination (i.e., the γr ∈ C) of the ZCG

r .
Then

(1) If the |γr| ≤ 1 for r = 0, . . . , d − 1, then the L2((S1)sc)-norm of Z
satisfies: ||Z|| ≤ d2 · ed ≤ e3d.

(2) If ||Z|| ≤ 1, then the |γr| ≤ e26·d, for r = 0, . . . , d − 1.

In particular, if we orthonormalize the ZCG
r to form

ZOC
0 , . . . , ZOC

d−1
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– which are unique if we stipulate that the leading coefficient of ZOC
r (i.e., the coefficient

of ZCG
r in the linear combination of ZCG

0 , . . . , ZCG
r that forms ZOC

r ) be positive – then the
coefficients of the ZCG

r in each ZOC
r′ have absolute value ≤ e26d, and the absolute values of

the leading coefficients are ≥ d−2 · e−d ≥ e−3d.

Proof. The assertion concerning the ZOC
r at the end of Theorem 3.3 follows formally from

Assertions (1) and (2) (cf. the proof of Theorem 2.3). Assertion (2) is precisely what we
have just proven in the above discussion. Thus, it remains to verify Assertion (1). As we
saw above, the absolute value of the coefficient of U

k[r]
sc (for k[r] ∈ KCrit) in Z is

∣∣∣ r∑
j=0

γj ·
(

k[r] + λj

j

)
· qΨ(k[r])−Ψ(k[j])

sc · χ(k[r]et)
∣∣∣ ≤ r∑

j=0

∣∣∣ (k[r] + λj

j

) ∣∣∣

Thus, since the cardinality of KCrit is d, it suffices to show that
∑r

j=0 |
(
k[r]+λj

j

)
| ≤ d · ed,

for all k[r] ∈ KCrit. Moreover, this last inequality will follow as soon as we show that

∣∣∣ (k[r] + λj

j

) ∣∣∣ ≤ 2d ≤ ed

But this follows from the analysis of the “binomial coefficient portion of C[r, r′]” in the
discussion above: Indeed, this analysis shows that there exists an integer N satisfying
j ≤ N ≤ j − 1 + 1

2 (r − j + 2) ≤ r such that

∣∣∣ (k[r] + λj

j

) ∣∣∣ = (N

j

)
≤ 2N ≤ 2r ≤ er ≤ ed

as desired. ©

Remark. Thus, stated in words, Theorem 3.3 asserts that:

If Im(τor) ≥ 32
π · log2(d), then up to a factor of order Cd (for some

constant C), the L2((S1)sc)-norm on the complex vector space gener-
ated by ZCG

0 , . . . , ZCG
d−1, is the same as the norm for which the functions

ZCG
0 , . . . , ZCG

d−1 are orthonormal.

Note that unlike the case with Theorem 2.3, in the present situation, one does not have
the stronger result that the discrepancy is of order Cr on the subspace generated by
ZCG

0 , . . . , ZCG
r . Indeed, typically results such as Theorem 3.3, (2), (i.e., where one must

show that the coefficients are bounded whenever the L2((S1)sc)-norm is bounded) are much
more difficult than results such as Theorem 3.3, (1) (i.e., where one must show that if the
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coefficients are bounded, then the L2((S1)sc)-norm is bounded). But it is not difficult to
check that even in this easier direction (i.e., the direction of Theorem 3.3, (1)) the binomial
coefficients that one must bound do not satisfy ≤ Cr type inequalities.

§4. The Combinatorics of the Full Binomial Model

In this and the following §’s, we discuss what we call the (full) binomial model. This
“full” binomial model is a deformation of the truncated binomial model studied in §3 (cf.
especially Theorem 3.3) in essentially the same way as the “Legendre model” studied in
§2 (cf. especially Theorem 2.3) is a deformation of (what are essentially) the discrete
Tchebycheff polynomials. One difference, however, between what we do in the present and
following §’s and what was done in §3 is that here, we do not use the averaging process of
§1. As a result, there are two types of deformation term that occur. The first type results
from the fact that we do not use the averaging process of §1. This type will be dealt with
in the discussion of the semi-truncated binomial model below, and is the more difficult to
handle (of the two types). The second type is exactly the same as the deformation terms
that occurred in “Case (ii)” of the proof of Lemma 2.1, and may be handled in exactly
the same way as in the proof of Lemma 2.1. Unfortunately, since our estimates of the first
type of deformation term are very involved, we treat the combinatorial aspects of these
estimates in the present §. In the following §, we apply the results of the present § to study
the orthogonal system which constitutes the “full binomial model.”

We maintain the notation of §3. Also, for simplicity, we assume in the following
discussion that

d ≥ 12

Let us write

KSemi
def= {k ∈ Z | ∃k0 ∈ KCrit s.t. |k − k0| = d, |k0 + (iχ/n)| ≥ d

4
, k · k0 < 0}

Thus, KSemi

⋂
KCrit = ∅, 0 /∈ KSemi. In general, for k ∈ Z, let us write

Crit(k)

for the (unique) k0 ∈ KCrit such that k ≡ k0 modulo d. Also, let us write

{k[d]} def= {0 − λd+1, 1 − λd+1, . . . , d − λd+1}\KCrit; F d+1(KCrit)
def= {k[d]}

⋃
KCrit
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In the following discussion, if F is a finite subset of R, and λ ∈ R, then we shall write

Dist(λ,F ) def= Minf∈F {|λ − f |}

for the “distance” between λ and F . Finally, we shall write

Ψ̃(λ) def= Ψ(λ) +
1
2
· (iχ/n)2 =

1
2
· (λ + (iχ/n))2

for λ ∈ R. Note that if r1 ≤ r2 (where r1, r2 are nonnegative integers ≤ d), then Ψ(k[r1]) ≤
Ψ(k[r2]), Ψ̃(k[r1]) ≤ Ψ̃(k[r2]).

We would like to begin by introducing the “semi-truncated version” of the ζCG
r , i.e.,

a function which is a sort of intermediate step between ζCG
r and ZCG

r :

ZCG
r

def= q−Ψ(k[r])
sc ·

∑
k∈KCrit

⋃
KSemi

(
k + λr

r

)
· qΨ(k)

sc · UCrit(k)
sc · χ(ket)

= ZCG
r + q−Ψ(k[r])

sc ·
∑

k∈KSemi

(
k + λr

r

)
· qΨ(k)

sc · UCrit(k)
sc · χ(ket)

The key to understanding ZCG
r is the following analysis of the combinatorics of the sets

KCrit, KSemi:

Lemma 4.1. If A,B ∈ R, let us write [A,B]Int for the set of integers in the closed
interval [A,B] ⊆ R. Let r ∈ [2, d]Int. Then

[
− (r − 2)

2
,
(r − 2)

2

]
Int

⊆ F r(KCrit) = [−λr, r − 1 − λr]Int ⊆
[
− r

2
,
r

2

]
Int

In particular, for any k0 ∈ F r(KCrit), we have |k0| ≤ r
2 , and r

2 ≥ |k[r − 1]| ≥ r−2
2 .

Finally, the average (or “center of mass”) Avg(F r(KCrit)) of the elements of F r(KCrit) is
1
2 (r − 1) − λr ∈ {0,± 1

2}.

Proof. Indeed, the number λr of Chapter V, Theorem 4.8, satisfies r
2 ≥ λr ≥ r−2

2 ≥ 0
(since r ≥ 2). Thus, F r(KCrit) = [−λr, r − 1− λr]Int ⊆ [− r

2 , r
2 ]; F r(KCrit) = [−λr, r − 1−

λr]Int ⊇ [− r−2
2 , r−2

2 ]. Since k[r − 1] ∈ {−λr, r − 1 − λr}, it thus follows that |k[r − 1]| ≥
Min(λr, r−1−λr) ≥ Min( r−2

2 , r−2
2 ) = r−2

2 . Finally, the statement concerning the average
follows immediately. ©
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Lemma 4.2. Suppose that k ∈ Z\(KCrit

⋃
KSemi). Then |k + (iχ/n)| ≥ 3

4d; |k| ≥ 1
2d.

Moreover, we have Ψ(k) − Ψ(k[d − 1]) ≥ 1
16 · d · |k|.

Proof. Write k0
def= Crit(k). Since k /∈ KSemi, /∈ KCrit, it follows from the definitions that

at least one of the following holds: |k − k0| ≥ 2d, or |k0 + (iχ/n)| < d
4 , or k · k0 ≥ 0.

Suppose that |k − k0| ≥ 2d. By Lemma 4.1 above, we have |k0| ≤ d
2 . Thus, it follows that

|k + (iχ/n)| ≥ 2d − |k0| − 1
2 ≥ 2d − 1

2d − 1
2 = 3

2d − 1
2 ≥ 3

4d (since d ≥ 1), as desired.

Next, let us assume that |k0 +(iχ/n)| < d
4 . Write k = k0 +A · d, where A ∈ Z, A �= 0.

Then |k + (iχ/n)| ≥ |A| · d − |k0 + (iχ/n)| ≥ d − 1
4d = 3

4d, as desired.

Finally, let us assume that k · k0 ≥ 0. Write k = k0 + A · d, where A ∈ Z, A �= 0.
Then since |k0| ≤ d

2 ≤ d − 1 (by Lemma 4.1, d ≥ 2), it follows that |A| · d ≥ d > |k0|.
Thus, k · k0 ≥ 0 implies that A · k0 · d ≥ −k2

0, hence that A · k0 ≥ 0. In particular,
|k + (iχ/n)| ≥ |A · d + k0| − 1

2 ≥ |A| · d − 1
2 ≥ d − 1

2 ≥ 3
4d (since d ≥ 2), as desired.

This completes the proof of the assertion |k + (iχ/n)| ≥ 3
4d. This implies that |k| ≥

|k + (iχ/n)| − 1
2 ≥ 3

4d − 1
2 ≥ 1

2d (since d ≥ 2). Now we compute (using this assertion,
together with the estimates of Lemma 4.1):

2(Ψ(k) − Ψ(k[d − 1])) = 2(Ψ̃(k) − Ψ̃(k[d − 1])) = (k + (iχ/n))2 − (k[d − 1] + (iχ/n))2

= {|k + (iχ/n)| + |k[d − 1] + (iχ/n)|}
· {|k + (iχ/n)| − |k[d − 1] + (iχ/n)|}

≥ 3
4
d · (|k + (iχ/n)| − 1

2
− |k[d − 1]|)

≥ 3
4
d · (|k + (iχ/n)| − 1

2
(d + 2) +

1
2
)

≥ 3
4
d · (|k + (iχ/n)| − 5

8
d +

1
2
) ≥ 3

4
d · (1

6
|k + (iχ/n)| + 1

2
)

≥ 1
8
d · (|k + (iχ/n)| + 3) ≥ 1

8
d · (|k| − 1

2
+ 3) ≥ 1

8
· d · |k|

(where we use d ≥ 8), as desired. ©

Lemma 4.3. Let k ∈ KSemi. Suppose that there exists some k[r] ∈ KCrit (where r ∈
[0, d−1]Int) such that Ψ(k) = Ψ(k[r]). Then r = d−1, k = k[d], and the character χ belongs
(in the language of Chapter V, §4) to Cases I or II. Moreover, under these hypotheses,
Crit(k) = k[d− 1], and (for any r′ < d− 1) we have Ψ(k[r′]) < Ψ(k[r]) = Ψ(k[d− 1]). We
shall refer to such k as exceptional.

Proof. Indeed, this follows from the discussion of Chapter V, Schola 4.1. More precisely,
if χ belongs to Case III, then Ψ is injective on Z. Thus, χ must belong to Cases I or II.
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It follows from the discussion of Chapter V, Schola 4.1, that the map r′ �→ Ψ(k[r′]) (for
r′ = 0, . . . , d) is monotone increasing even in Cases I or II, and that the fibers of the map
k′ �→ Ψ(k′) (for k′ ∈ Z) contain at most two elements. Moreover, since k /∈ KCrit, it follows
that Ψ(k[d]) ≤ Ψ(k).

Now I claim that Ψ(k[d − 1]) = Ψ(k[d]). Indeed, if Ψ(k[d − 1]) < Ψ(k[d]), then it
follows that Ψ(k[r]) ≤ Ψ(k[d − 1]) < Ψ(k[d]) ≤ Ψ(k) (which contradicts the hypothesis
Ψ(k[r]) = Ψ(k)). This proves the claim.

Thus, since the fibers of the map r′ �→ Ψ(k[r′]) (for r′ = 0, . . . , d) contain at most
two elements, it follows that for r′ = 0, . . . , d − 2, we have Ψ(k[r′]) < Ψ(k[d − 1]) =
Ψ(k[d]) ≤ Ψ(k). Thus, we conclude that r = d − 1. If k[d] �= k, then the fact that
the fibers of the map k′ �→ Ψ(k′) (for k′ ∈ Z) contain at most two elements implies that
Ψ(k[r]) = Ψ(k[d−1]) = Ψ(k[d]) < Ψ(k), which is absurd. Thus, we conclude that k[d] = k.

Thus, it remains to prove that Crit(k) = k[d − 1]. But this follows from the explicit
analysis of Chapter V, Schola 4.1. Indeed, in Case I, since Ψ(k[d−1]) = Ψ(k[d]), it follows
that d is odd, and that |k[d] − k[d − 1]| = 2 · { 1

2 (d − 1)} + 1 = d. Similarly, in Case
II, since k[d − 1] = k[d], it follows that d is even, and that |k[d]| = |k[d − 1]| = 1

2d, so
|k[d] − k[d − 1]| = d, as desired. This completes the proof. ©

Lemma 4.4. Suppose that k is exceptional (cf. Lemma 4.3). Write k0
def= Crit(k).

Then the coefficient of Uk0
sc in ZCG

d−1 is a complex number whose absolute value is ≤ 2 and
≥ π

2m = π
n .

Proof. Recall the original nontruncated series

ζCG
r

def=
(

Lr(δ∗)
r

)
(ζCG

0 ) =
∑
k′∈Z

(
k′ + λr

r

)
· qΨ(k′)

sc · U2mk′+iχ
cv · χ((k′)et)

Now I claim that as k′ ranges over k0+d ·Z, the only k′ (other than k0 = k[d−1]) for which
Ψ(k′) = Ψ(k0) is the current exceptional k under consideration. Indeed, if k′ ∈ KCrit, this
follows from Lemma 4.3. If k′ ∈ KSemi, then by Lemma 4.3, k′ = k[d] = k. Finally, if
k′ /∈ KCrit, /∈ KSemi, then by Lemma 4.2, Ψ(k′) > Ψ(k[d − 1]) = Ψ(k0). This completes
the proof of the claim.

Next, recall from Lemma 4.3 that Ψ(k[d− 1]) > Ψ(k[r]) for r < d− 1. It thus follows
that if we restrict the q

−Ψ(k[r])
sc · ζCG

r (for r = 0, . . . , d− 1) to μd ⊆ (S1)sc, and let qsc → 0,
then the coefficient of U

2mk0+iχ
cv will be 0 for r < d − 1, and it will be equal (by the claim

of the preceding paragraph) to

∑
k′=k0,k

(
k′ + λd−1

d − 1

)
· χ((k′)et)
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for r = d−1. Note that for k′ = k0, k, we have k′+λd−1 ∈ {−1, d−1}, so
(
k′+λd−1

d−1

)
= ±1.

Thus, the coefficient in question will be a sum of two n-th roots of unity. This shows that
this coefficient has absolute value ≤ 2. It also shows that if this coefficient is nonzero, then
it has absolute value ≥ sin(2π/n) = sin(π/m) ≥ π

2m (where the inequality may be proven
by elementary calculus, using the fact that m ≥ 2). Moreover, it follows immediately from
the definitions that this coefficient is the coefficient referred to in the statement of Lemma
4.4.

Thus, it suffices to show that this coefficient is nonzero. But since the corresponding
coefficients in q

−Ψ(k[r])
sc · ζCG

r are 0 for r < d − 1, to say that the present coefficient in
question is zero would imply that the comparison isomorphism (Chapter VI, Theorem 4.1
– in fact, we only need it in characteristic zero, i.e., Chapter VI, Theorem 3.1) is false.
This contradiction completes the proof of Lemma 4.4. ©

Remark. The proof of Lemma 4.4 is interesting because it may be turned around and
regarded as an explicit way to verify the comparison theorem (Chapter VI, Theorem 4.1)
in a neighborhood of infinity. That is to say, the fact that the coefficient in question is
nonzero may also be proven by a direct computation (which is not difficult, and is left as
an exercise for the reader). This direct computation may then be regarded as an alternate
proof of Chapter VI, Theorem 4.1, in a neighborhood of infinity. Put another way, this
portion of the treatment of the archimedean theory in the present Chapter may be regarded
as the archimedean analogue of the description of the scheme-theoretic zero locus of the
determinant given in Chapter VI, Theorem 4.1, (2).

Lemma 4.5. Let k ∈ KSemi. Then |k| ≥ 1
2d.

Proof. Write k0
def= Crit(k). Since |k − k0| = d, we have |k| ≥ d − |k0| ≥ d − 1

2d = 1
2d (by

Lemma 4.1). ©

Lemma 4.6. Let X, A, and B be nonnegative real numbers such that B ≥ A, B > 0.
Then (X + A) ≥ (A/B) · (X + B).

Proof. Indeed, B(X + A) ≥ B · X + A · B ≥ A · X + A · B = A(X + B). ©

Lemma 4.7. Let k ∈ KSemi. Write k0 = k[r0] = Crit(k). Let r be an integer satisfying
4 ≤ r ≤ d − 1. Then

Ψ(k) − Ψ(k[r]) ≥ 1
32n

· d · Dist(k, F r(KCrit))

so long as either k is non-exceptional (cf. Lemma 4.3) or r < d − 1.
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Proof. Write σk
def= k/|k| (note that |k| ≥ 1 > 0, by Lemma 4.5), k[r]∗ def= −(iχ/n) + σk ·

|k[r] + (iχ/n)|. By Lemma 4.1, |k[r]| ≥ r+1
2 − 1 ≥ 1 + 1

2 . It thus follows that k[r]∗ has the
same sign as k, and that |k[r]∗| ≥ r+1

2 − 1 − 1 = r−3
2 .

Write R ·F r(KCrit) for the closed convex hull (in R) of the points in F r(KCrit). Note
that k /∈ F r(KCrit), so k /∈ R ·F r(KCrit); 0 ∈ R ·F r(KCrit) (by Lemma 4.1). Observe that
k divides the real line into two open rays. Now I claim that k[r]∗ lies in the same open ray
as R · F r(KCrit). Indeed, if this were not the case, then since 0 ∈ R · F r(KCrit), it would
then follow that |k[r]∗| ≥ |k| ≥ 1. Since k[r]∗ and k have the same sign, it thus follows
that |k[r]∗+(iχ/n)|− |k[r]∗| = |k +(iχ/n)|− |k|, hence that |k[r]∗+(iχ/n)| ≥ |k +(iχ/n)|.
But this implies that

2 · Ψ̃(k[r]) = (k[r] + (iχ/n))2 = (k[r]∗ + (iχ/n))2 ≥ (k + (iχ/n))2 = 2 · Ψ̃(k)

i.e., that Ψ(k[r]) ≥ Ψ(k). On the other hand, since k[r] ∈ KCrit, k /∈ KCrit, we have
Ψ(k[r]) ≤ Ψ(k). Thus, we conclude that Ψ(k[r]) = Ψ(k), so k is exceptional and r = d− 1,
contrary to the hypotheses of Lemma 4.7. This completes the proof of the claim.

Thus, k[r]∗ �= k lies to the same side of k as R · F r(KCrit). Next, let us prove the
inequality

|k − k[r]∗| ≥ 1
4n

· Dist(k, F r(KCrit))

Indeed, if |k − k[r]∗| ≥ Dist(k, F r(KCrit)), then this inequality follows immediately, so
we may assume that |k − k[r]∗| < Dist(k, F r(KCrit)), i.e., that k[r]∗ lies between k and
R · F r(KCrit). Since k �= k[r]∗ and n · k, n · k[r]∗ ∈ Z, it follows that |k − k[r]∗| ≥ 1

n .
On the other hand, Dist(k[r]∗, F r(KCrit)) = |k[r]∗ − k[r′]| for some r′ ∈ {r − 2, r − 1}
(i.e., k[r′] is the closest element ∈ F r(KCrit) to k[r]∗). Moreover, by Lemma 4.1, we have
r+1
2 + 1 ≥ |k[r]∗| ≥ r−3

2 ; r
2 ≥ |k[r − 1]|, |k[r − 2]| ≥ r−3

2 > 0. Thus, in particular, it follows
that k[r′] and k[r]∗ have the same sign, so we obtain

Dist(k[r]∗, F r(KCrit)) = |k[r]∗ − k[r′]|

≤ Max
(1

2
(r + 3) − 1

2
(r − 3),

1
2
r − 1

2
(r − 3)

)
= 3

Thus, by Lemma 4.6 (where we take the quantity “X + A” (respectively, “X + B”) of
Lemma 4.6 to be |k − k[r]∗| (respectively, Dist(k, F r(KCrit)))), we have

|k − k[r]∗| ≥ 1
n
·
( 1

n
+ 3
)−1

· Dist(k, F r(KCrit)) ≥
1
4n

· Dist(k, F r(KCrit))
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This completes the proof of the inequality |k − k[r]∗| ≥ 1
4n · Dist(k, F r(KCrit)).

Now we are ready to complete the proof of Lemma 4.7. Note that since either k is
non-exceptional or r < d − 1, we have Ψ(k) > Ψ(k[r]) (cf. Lemma 4.3). Also, by the
definition of k[r]∗, it follows that k[r]∗ + (iχ/n) and k + (iχ/n) have the same sign. Thus,
we compute (using the inequality of the preceding paragraph, together with Lemma 4.5):

2(Ψ(k) − Ψ(k[r])) = 2(Ψ̃(k) − Ψ̃(k[r])) = 2(Ψ̃(k) − Ψ̃(k[r]∗))

= (k + (iχ/n))2 − (k[r]∗ + (iχ/n))2

= (|k + (iχ/n)| + |k[r]∗ + (iχ/n)|) · (|k + (iχ/n)| − |k[r]∗ + (iχ/n)|)
≥ |k + (iχ/n)| · |k + (iχ/n) − k[r]∗ − (iχ/n)|

≥ (
1
2
d − 1

2
) · |k − k[r]∗|

≥ (
1
4
d) · 1

4n
· Dist(k, F r(KCrit)) =

1
16n

· d · Dist(k, F r(KCrit))

(where we use that d ≥ 2) as desired. ©

Finally, we need one more lemma in the style of Lemma 4.7, which is a sort of analogue
(in the present context) of Lemma 3.1 of §3:

Lemma 4.8. Let r > r′ be nonnegative integers ≤ d − 1 such that

|k[r] + (iχ/n)|, |k[r′] + (iχ/n)| ≥ d

4

and Ψ(k[r]) �= Ψ(k[r′]). Then Ψ(k[r]) − Ψ(k[r′]) ≥ 1
32n · d · Dist(k[r], F r′(KCrit)).

Proof. Write k
def= k[r], k′

def= k[r′], σk
def= k/|k| (note that |k| ≥ |k+(iχ/n)|− 1

2 ≥ d
4 − 1

2 ≥
1 > 0, since d ≥ 6), (k′)∗ def= −(iχ/n) + σk · |k′+ (iχ/n)|. Since |k + (iχ/n)|, |k′+ (iχ/n)| ≥
d
4 > 1, it follows that k, (k′)∗, k + (iχ/n), and (k′)∗ + (iχ/n) have the same sign. Thus,

|k+(iχ/n)|−|(k′)∗+(iχ/n)| = σk(k+(iχ/n)−(k′)∗−(iχ/n)) = σk(k−(k′)∗) = |k|−|(k′)∗|

On the other hand, since Ψ(k) > Ψ(k′) = Ψ((k′)∗), it follows that this difference of absolute
values is > 0, hence that

|k| > |(k′)∗|
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Next, observe that λ1 = 0 (cf. Chapter V, Theorem 4.8). Thus, k[0] = 0, hence r, r′ ≥ 1
(since |k|, |k′| ≥ d

4 − 1
2 ≥ 1). In particular, 0 ∈ F 1(KCrit) ⊆ F r′(KCrit). On the other

hand, since r > r′, k = k[r] /∈ F r′(KCrit). Thus, we conclude that (k′)∗ and F r′(KCrit) lie
to the same side of k (i.e., in the same connected component of R\{k}).

Note that the fact that 0 ∈ F r′(KCrit) also implies that F r′(KCrit) is nonempty. Let us
write k[r′′] for the unique element of F r′(KCrit) such that |k−k[r′′]| = Dist(k, F r′(KCrit)).
Then r′′ ∈ {r′ − 1, r′ − 2}. Thus, by Lemma 4.1 (plus the fact that k[0] = 0), we have:

r′′ + 1
2

≥ |k[r′′]| ≥ r′′ − 1
2

On the other hand, again by Lemma 4.1, we have

r′ + 1
2

≥ |k′| = |k[r′]| ≥ r′ − 1
2

which implies that

r′ + 3
2

≥ |(k′)∗| ≥ r′ − 3
2

hence (since k[r′′] · k ≥ 0, (k′)∗ · k > 0) that

|(k′)∗ − k[r′′]| ≤ Max(
r′′ + 1

2
− r′ − 3

2
,
r′ + 3

2
− r′′ − 1

2
)

≤ 1
2
· Max(r′′ − r′ + 4, r′ − r′′ + 4) ≤ 3

Now we are ready to prove the inequality:

|k − (k′)∗| ≥ 1
4n

· Dist(k, F r′(KCrit))

Indeed, without loss of generality, we may assume that |k − (k′)∗| < Dist(k, F r′(KCrit)),
i.e., that (k′)∗ lies strictly between k and F r′(KCrit). Since k �= (k′)∗ and n ·k, n ·(k′)∗ ∈ Z,
it follows that |k − (k′)∗| ≥ 1

n . On the other hand, |(k′)∗ − k[r′′]| ≤ 3, so by Lemma 4.6,
we have

|k − (k′)∗| ≥ 1
n
· ( 1

n
+ 3)−1 · |k − k[r′′]| ≥ 1

4n
· |k − k[r′′]| =

1
4n

· Dist(k, F r′(KCrit))

as desired.

304



Thus, just as in Lemma 4.7, we have:

2(Ψ(k) − Ψ(k′)) = 2(Ψ̃(k) − Ψ̃(k′)) = 2(Ψ̃(k) − Ψ̃((k′)∗))

= (k + (iχ/n))2 − ((k′)∗ + (iχ/n))2

= (|k + (iχ/n)| + |(k′)∗ + (iχ/n)|) · (|k + (iχ/n)| − |(k′)∗ + (iχ/n)|)
≥ (|k + (iχ/n)|) · |k + (iχ/n) − (k′)∗ − (iχ/n)|

≥ 1
4
d · |k − (k′)∗|

≥ 1
4
d · 1

4n
· Dist(k, F r′(KCrit)) =

1
16n

· d · Dist(k, F r′(KCrit))

as desired. ©

§5. The Full Binomial Model

In this §, we apply the estimates of the preceding § to study the orthogonal system
which constitutes the full binomial model.

We maintain the notation of §4. We begin by considering the binomial coefficients
that appear in the sum defining ZCG

r .

Lemma 5.1. Let k ∈ Z, r ∈ [0, d − 1]Int (where [0, d − 1]Int
def= [0, d − 1]

⋂
Z is as in

Lemma 4.1). Then

∣∣∣(k + λr

r

)∣∣∣ = (Dist(k, F r(KCrit)) + r − 1
r

)

In particular, log(
∣∣∣(k+λr

r

)∣∣∣) ≤ Dist(k, F r(KCrit)) · log(|k| + d).

Proof. First, let us observe that in general, for any N ∈ Z, we have the identity

∣∣∣(N

r

)∣∣∣ = (Dist(N, [0, r − 1]Int) + r − 1
r

)

Indeed, this is clear for N ∈ [0, r− 1]Int (since both sides are zero). For N < 0, one checks
easily that |

(
N
r

)
| =
(
r−1−N

r

)
, Dist(N, [0, r−1]Int) = Dist(r−1−N, [0, r−1]Int), so it suffices
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to prove the identity when N ≥ r. But for N ≥ r, we have Dist(N, [0, r−1]Int) = N−(r−1),
so the identity follows immediately.

Applying this identity, we obtain

∣∣∣(k + λr

r

)∣∣∣ = (Dist(k + λr, [0, r − 1]Int) + r − 1
r

)

=
(

Dist(k, [0, r − 1]Int − λr) + r − 1
r

)
=
(

Dist(k, F r(KCrit)) + r − 1
r

)

by the definition of F r(KCrit).

Finally, we note that the binomial coefficient
(
Dist(k,F r(KCrit))+r−1

r

)
may be bounded

by the product of Dist(k, F r(KCrit)) − 1 (≤ Dist(k, F r(KCrit))) integers all of which have
absolute value ≤ |Dist(k, F r(KCrit)) + r − 1| ≤ |k − Avg(F r(KCrit))| + |r − 1| ≤ |k| + 1

2 +
(d − 2) ≤ |k| + d (by Lemma 4.1). ©

Let us write

KSemi
Crit

def= Crit(KSemi) ⊆ KCrit

Thus, (by the definition of KSemi) every k0 ∈ KSemi
Crit satisfies |k0 + (iχ/n)| ≥ d

4 ≥ 3 (so
|k0| ≥ 5

2 ), where we use that d ≥ 12. Also, if k[r] ∈ KSemi
Crit , then r ≥ 4 (indeed, if r ≤ 3,

then by Lemma 4.1, |k[r]| ≤ r+1
2 ≤ 2). Let us write

RSemi
Crit

def= {r ∈ [0, d − 1]Int | k[r] ∈ KSemi
Crit }

Next, let us observe that

KSemi
Crit = {k0 ∈ KCrit | |k0 + (iχ/n)| ≥ d

4
}

Indeed, “⊆” follows from the definition of KSemi. On the other hand, if |k0 + (iχ/n)| ≥ d
4 ,

and σk0

def= k0/|k0|, then (since |k0| ≤ d
2 < d by Lemma 4.1, d ≥ 1) the integer k

def=
k0 − σk0 · d satisfies k · k0 < 0, hence ∈ KSemi. This completes the proof of the above
observation. In the following, we shall write

Semi(k0)
def= k0 − σk0 · d

In particular, since (for r ∈ [0, d − 1]Int) r �→ |k[r] + (iχ/n)| = {2 · Ψ̃(k[r])} 1
2 is (not

necessarily strictly) monotone increasing, it follows that RSemi
Crit is an interval of integers,
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i.e., of the form [r, d − 1]Int (where |k[d − 1] + (iχ/n)| ≥ d−2
2 − 1

2 ≥ d
4 (by Lemma 4.1,

d ≥ 6) implies d − 1 ∈ RSemi
Crit ) for some integer r.

Next, we would like to define a matrix M def= {Mr,r′} (where r, r′ ∈ RSemi
Crit ) by:

Mr,r′
def= Coeff

U
k[r′]
sc

(ZCG
r )

= q−Ψ(k[r])
sc ·

{(k[r′] + λr

r

)
· qΨ(k[r′])

sc · χ(k[r′]et)

+
(

Semi(k[r′]) + λr

r

)
· qΨ(Semi(k[r′]))

sc · χ(Semi(k[r′])et)
}

Let us write

M def= M0 + MSemi

where (M0)r,r′ is defined to be the sum of all the terms in Mr,r′ in which the exponent of

qsc is zero; MSemi
def= M − M0. More precisely, (by Lemma 4.3) (M0)r,r′ can be nonzero

only when Ψ(k[r]) = Ψ(k[r′]). Moreover, when Ψ(k[r]) = Ψ(k[r′]), we have

(M0)r,r′ =
(

k[r′] + λr

r

)
· χ(k[r′]et) + ε ·

(
Semi(k[r′]) + λr

r

)
· χ(Semi(k[r′])et)

where ε
def= 1 if r = r′ = d − 1 and Semi(k[d − 1]) = k[d] is exceptional (cf. Lemma

4.3); and ε
def= 0 otherwise. In the following discussion, we would like to show that (under

certain conditions) M admits a bounded inverse. We will do this by regarding MSemi as a
deformation of M0, i.e., we will first study the inverse of M0 and then show that MSemi

is rather small.

We begin by considering M0. Note that since the fibers of the map r �→ Ψ(k[r]) have
at most two (necessarily adjacent) elements, it follows that (M0)r,r′ can be nonzero only
in the cases r = r′ and r = r′ ± 1.

Now suppose that r = r′. Then we have k[r] + λr ∈ {−1, r}, so
(
k[r]+λr

r

)
= ±1.

Similarly, if r = r′ = d − 1 and Semi(k[d − 1]) = k[d] is exceptional, then we have
Semi(k[r]) + λr ∈ {−1, d − 1}, so

(
Semi(k[r′])+λr

r

)
= ±1. Thus,

(M0)r,r = ±χ(k[r]et) ± ε · χ(Semi(k[r])et)

(where the two “±’s” are not necessarily the same sign). Note that when r = r′ = d − 1
and k[d] is exceptional, (M0)r,r is precisely the coefficient discussed in Lemma 4.4.
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Next, suppose that r = r′ − 1. In this case, ε = 0. Moreover, k[r′] = k[r + 1] ∈
F r+2(KCrit), so k[r′] + λr ∈ {−1, r}. Thus,

(
k[r′]+λr

r

)
= ±1, so we have:

(M0)r,r+1 = ±χ(k[r + 1]et)

Note, moreover, that in this case, since Ψ(k[r]) = Ψ(k[r + 1]), and the fibers of the map
r �→ Ψ(k[r]) have at most two elements, it follows that Ψ(k[r + 1]) < Ψ(k[r + 2]), i.e., that
(M0)r+1,r+2 = 0.

Finally, suppose that r = r′ + 1. In this case, ε = 0. Moreover, k[r′] = k[r − 1] ∈
F r(KCrit), so k[r′] + λr ∈ [0, r − 1]Int. Thus,

(
k[r′]+λr

r

)
= 0, so we have:

(M0)r,r−1 = 0

In particular, we conclude that (M0)r,r′ = 0 if r > r′ or r < r′ − 1. In fact, this analysis
shows the following:

Lemma 5.2. The matrix M0 is of the form

⎛
⎜⎜⎜⎜⎜⎝

∗ 0 0 . . . 0

0 ∗ 0 . . . 0

. . .

0 0 0 . . . ∗

⎞
⎟⎟⎟⎟⎟⎠

that is to say, zeroes away from the “diagonal” (i.e., the “∗’s”), where each “∗” in the
diagonal is either a one-by-one matrix or an upper triangular two-by-two matrix. In par-
ticular, M0 itself is upper triangular. Moreover, the diagonal matrix elements of each
submatrix “∗” are either n-th roots of unity, or (in the case of (M0)d−1,d−1, when k[d]
is exceptional) the coefficient of Lemma 4.4. The off-diagonal elements of each submatrix
“∗” are all n-th roots of unity. Finally, M0 is invertible, and the components of its inverse
M−1

0 are complex numbers of absolute value ≤ n
π .

Proof. All the statements except for the “Finally,...” follow immediately from the above
analysis. The “Finally,...” follows from the fact that each of the ∗’s are invertible, with
inverses bounded as stated. (Note that here we use the estimates of Lemma 4.4.) ©

Next, we would like to bound MSemi. By definition, MSemi consists of the terms of
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Mr,r′ = q−Ψ(k[r])
sc ·

{(k[r′] + λr

r

)
· qΨ(k[r′])

sc · χ(k[r′]et)

+
(

Semi(k[r′]) + λr

r

)
· qΨ(Semi(k[r′]))

sc · χ(Semi(k[r′])et)
}

for which the exponent of qsc is nonzero. Thus, there are two cases (corresponding to the
two terms that appear in Mr,r′) to consider: (i) Ψ(k[r′]) �= Ψ(k[r]); (ii) Ψ(Semi(k[r′])) �=
Ψ(k[r]). We begin by considering case (ii). In this case, either Semi(k[r′]) is non-
exceptional, or r < d − 1. Moreover, (since r ∈ RSemi

Crit ) r ≥ 4. Thus, Lemma 4.7 implies
that

Ψ(Semi(k[r′])) − Ψ(k[r]) ≥ 1
32n

· d · Dist(Semi(k[r′]), F r(KCrit))

Thus, since d + |Semi(k[r′])| ≤ 2d + |k[r′]| ≤ 5
2 · d ≤ d2 (by the definition of “Semi(−),”

Lemma 4.1, d ≥ 3), we have (by Lemma 5.1):

∣∣∣ (Semi(k[r′]) + λr

r

)
· qΨ(Semi(k[r′]))−Ψ(k[r])

sc · χ(Semi(k[r′])et)
∣∣∣

≤ e2·log(d)·Dist(Semi(k[r′]),F r(KCrit)) · |qsc|
d

32n ·Dist(Semi(k[r′]),F r(KCrit))

= e(2·log(d)−Im(τor)· π
16n )·Dist(Semi(k[r′]),F r(KCrit))

(where we use that log|qsc| = − 2π
d · Im(τor)). Also, let us observe that (since Semi(k[r′]) /∈

F r(KCrit)), we have Dist(Semi(k[r′]), F r(KCrit)) ≥ 1.

Next, we consider case (i), i.e., the first term in Mr,r′ when Ψ(k[r′]) �= Ψ(k[r]). Note
first of all that this condition implies that r �= r′. Moreover, if r > r′, then k[r′] ∈
F r(KCrit), i.e., k[r′] + λr ∈ [0, r − 1]Int, so

(
k[r′]+λr

r

)
= 0. Thus, it suffices to bound this

term when r < r′. Note that since r, r′ ∈ RSemi
Crit , we have |k[r]+(iχ/n)|, |k[r′]+(iχ/n)| ≥ d

4 .
Thus, by applying Lemma 4.8 (note that “r,” “r′” in Lemma 4.8 are the reverse of what
they are in the present discussion), we obtain

Ψ(k[r′]) − Ψ(k[r]) ≥ 1
32 · n · d · Dist(k[r′], F r(KCrit))

Thus, using Lemma 5.1 (and the fact that d + |k[r′]| ≤ 3
2 · d ≤ d2, by Lemma 4.1, d ≥ 2)

as in the preceding paragraph, we obtain:

∣∣∣ (k[r′] + λr

r

)
· qΨ(k[r′])−Ψ(k[r])

sc · χ(k[r′]et)
∣∣∣

≤ e2·log(d)·Dist(k[r′],F r(KCrit)) · |qsc|
d

32n ·Dist(k[r′],F r(KCrit))

= e(2·log(d)−Im(τor)· π
16n )·Dist(k[r′],F r(KCrit))
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Also, let us observe that since r < r′ (so k[r′] /∈ F r(KCrit) ⊆ F r′(KCrit)), we have
Dist(k[r′], F r(KCrit)) ≥ 1.

Now let us assume that

Im(τor) ≥
{5 + (log(n)/log(d))} · 16

π
· log(d) · n

Then it follows that

2 · log(d) − Im(τor) ·
π

16n
≤ −{3 + (log(n)/log(d))} · log(d)

+
(
{5 + (log(n)/log(d))} · log(d) − Im(τor) ·

π

16n

)
≤ −{3 + (log(n)/log(d))} · log(d) = −3 · log(d) − log(n)

In particular, it follows that both of the terms (cf. the treatment of cases (i), (ii) above)
which appear in the components of MSemi have absolute value ≤ e−3·log(d)−log(n) = (n ·
d3)−1. Thus, since there are two terms involved, we obtain the following result:

Lemma 5.3. If the condition

Im(τor) ≥
{5 + (log(n)/log(d))} · 16

π
· log(d) · n

is satisfied, then the components of the matrix MSemi have absolute value ≤ 2
n·d3 . In

particular, the components of the matrix M−1
0 ·MSemi have absolute value ≤ d · n

π · 2
n·d3 ≤

d−2.

Proof. The statement concerning the absolute values of the components of MSemi was
proven in the above discussion. The statement concerning the absolute values of the
components of M−1

0 · MSemi follows from this estimate, plus the estimates of Lemma
5.2 (together with the fact that these matrices are square matrics of order equal to the
cardinality |KSemi

Crit | ≤ |KCrit| = d of KSemi
Crit ). ©

Now we come to the invertibility of the original matrix M. Note that

M−1
0 ·M def= 1 + M−1

0 · MSemi

Write M′ def= −M−1
0 · MSemi. Then by Lemma 5.3, the components of M′ have absolute

value ≤ d−2. Thus, for any nonnegative integer N , the components of (M′)N+1 will have
absolute value ≤ d−2 · (d · d−2)N = d−N−2 (where we again use the fact that |KSemi

Crit | ≤
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|KCrit| = d). Thus, the series
∑

N≥0 (M′)N converges to a matrix whose components have
absolute value ≤ (1 − d−1)−1 ≤ 2. Moreover,

M−1 =
( ∑

N≥0

(M′)N
)
· M−1

0

Thus, (applying the estimates of Lemma 5.2) we see that we have proven the following:

Lemma 5.4. Under the hypothesis of Lemma 5.3, the matrix M is invertible, and the
components of its inverse have absolute value ≤ 2 · d · n

π ≤ d · n.

Now we would like to consider the analogous problem for the ZCG
r to the problem that

we solved in §3 for the ZCG
r : Namely, let

Z
def=

d−1∑
r=0

γr · ZCG
r

be a C-linear combination (i.e., the γr ∈ C) of the ZCG
r .

Suppose that ||Z|| = 1. Then to what extent can one bound the gr
def= |γr|?

Since ||Z|| = 1, and the Uk
sc (k ∈ Z) form an orthonormal system in L2((S1)sc), it follows

that the coefficients of the Uk
sc (in the “Fourier expansion” of Z) are ≤ 1. In particular,

for each r′ = 0, . . . , d − 1, the coefficient of U
k[r′]
sc is ≤ 1. Thus, we would like to analyze

these coefficients in a fashion similar to §3. Unfortunately, however, the present situation
is somewhat more complicated than in §3, so we must break the situation down into two
cases.

First, we consider the case r′ /∈ RSemi
Crit . This case is the simpler case since it may be

reduced to the results of §3. More precisely, let us observe that for r′ /∈ RSemi
Crit , there do

not exist any k ∈ KSemi such that Crit(k) = k[r′]. Thus, if we just look at the coefficient
of U

k[r′]
sc , ZCG

r is exactly the same as ZCG
r . Thus, we obtain exactly the same inequalities

∣∣∣ r′∑
r=0

γr ·
(

k[r′] + λr

r

)
· qΨ(k[r′])−Ψ(k[r])

sc · χ(k[r]et)
∣∣∣ ≤ 1

as in §3. Note that since r′ ∈ RSemi
Crit , any r ≤ r′ will also ∈ RSemi

Crit . Thus, for the r appearing
in this sum, we also get similar inequalities (obtained by considering the coefficient of U

k[r]
sc ).

In particular, by the analysis of §3 (more precisely: by Theorem 3.3, (2)), we obtain the
following result:
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Lemma 5.5. Suppose that Im(τor) ≥ 32
π · log2(d). Then |γr| ≤ e26·d, for all r /∈ RSemi

Crit .

Next, we consider the case r′ ∈ RSemi
Crit . This case is the more difficult of the two cases.

First, let us observe that by looking at the coefficient of U
k[r′]
sc , we obtain an inequality

∣∣∣ d−1∑
r=0

γr · Coeff
U

k[r′]
sc

(ZCG
r )

∣∣∣ ≤ 1

analogous to the one considered in the “/∈ RSemi
Crit case.” Thus, under the hypothesis of

Lemma 5.5, we obtain

∣∣∣ ∑
r∈RSemi

Crit

γr · Mr,r′

∣∣∣ = ∣∣∣ ∑
r∈RSemi

Crit

γr · Coeff
U

k[r′]
sc

(ZCG
r )

∣∣∣
≤ 1 +

∣∣∣ ∑
r/∈RSemi

Crit

γr · Coeff
U

k[r′]
sc

(ZCG
r )

∣∣∣
≤ 1 + e26·d ·

∑
r/∈RSemi

Crit

∣∣∣ Coeff
U

k[r′]
sc

(ZCG
r )

∣∣∣
Now we have the following result:

Lemma 5.6. Let r ∈ [0, d − 1]Int, r′ ∈ RSemi
Crit . Then

∣∣∣ Coeff
U

k[r′]
sc

(ZCG
r )

∣∣∣ ≤ 23d−1.

Proof. Note that Ψ(Semi(k[r′])) ≥ Ψ(k[r]) always, and Ψ(k[r′]) ≥ Ψ(k[r]) if r ≤ r′. On
the other hand, Coeff

U
k[r′]
sc

(ZCG
r ) is given by

(
k[r′] + λr

r

)
· qΨ(k[r′])−Ψ(k[r])

sc · χ(k[r′]et)

+
(

Semi(k[r′]) + λr

r

)
· qΨ(Semi(k[r′]))−Ψ(k[r])

sc · χ(Semi(k[r′])et)

where the first term is zero if r > r′ (since then k[r′] ∈ F r′+1(KCrit) ⊆ F r(KCrit), so
k[r′] + λr ∈ [0, r − 1]Int). Since the exponents of qsc appearing in the nonzero term(s) are
≥ 0, we thus obtain that this coefficient has absolute value ≤

∣∣∣(k[r′] + λr

r

)∣∣∣+ ∣∣∣(Semi(k[r′]) + λr

r

)∣∣∣
≤
(

Dist(k[r′], F r(KCrit)) + r − 1
r

)
+
(

Dist(Semi(k[r′]), F r(KCrit)) + r − 1
r

)
≤ 2Dist(k[r′],F r(KCrit))+d−2 + 2Dist(Semi(k[r′]),F r(KCrit))+d−2 ≤ 22d−2 + 23d−2

≤ 2 · 23d−2 = 23d−1
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(where we use Lemma 5.1, d ≥ 1, and the estimates

Dist(k[r′], F r(KCrit)) ≤ |k[r′] − Avg(F r(KCrit))| ≤
d

2
+

1
2
≤ d

and

Dist(Semi(k[r′]), F r(KCrit)) ≤ |Semi(k[r′]) − Avg(F r(KCrit))| ≤ |Semi(k[r′])| + 1
2

≤ d + |k[r′]| + 1
2
≤ d +

d

2
+

1
2
≤ 2d

– cf. Lemma 4.1). ©

Thus, applying Lemma 5.6 in the above discussion, we obtain:

∣∣∣ ∑
r∈RSemi

Crit

γr · Mr,r′

∣∣∣ ≤ 1 + e26·d · |[0, d − 1]Int\RSemi
Crit | · 23d−1 ≤ d · e26·d · 23d ≤ d · e29·d

On the other hand, by Lemma 5.4, M is invertible, and the components of M−1 have
absolute value ≤ d · n. Thus, we conclude that, under the hypothesis of Lemma 5.3, we
have:

|γr| ≤ |RSemi
Crit | · (d · n) · d · e29·d ≤ n · d3 · e29·d ≤ n · e30·d

(since d ≤ e
1
3 ·d for d ≥ 6) for r ∈ RSemi

Crit . That is to say, we have proven the following
analogue for the ZCG

r of Theorem 3.3:

Theorem 5.7. Suppose that d ≥ 12, and

Im(τor) ≥
32
π

· log2(d) +
80
π

· n · log(d) +
16
π

· n · log(n)

and let Z
def=
∑d−1

r=0 γr ·ZCG
r be a C-linear combination (i.e., the γr ∈ C) of the ZCG

r . Then

(1) If the |γr| ≤ 1 for r = 0, . . . , d − 1, then the L2((S1)sc)-norm of Z
satisfies: ||Z|| ≤ d2 · e3d ≤ e4d.
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(2) If ||Z|| ≤ 1, then the |γr| ≤ n · e30·d, for all r = 0, . . . , d − 1, and
|γr| ≤ e26·d if r /∈ RSemi

Crit .

In particular, if we orthonormalize the ZCG
r to form

ZOC
0 , . . . ,ZOC

d−1

– which are unique if we stipulate that the leading coefficient of ZOC
r (i.e., the coefficient

of ZCG
r in the linear combination of ZCG

0 , . . . ,ZCG
r that forms ZOC

r ) be positive – then the
coefficients of the ZCG

r in each ZOC
r′ have absolute value ≤ n · e30d, and the absolute values

of the leading coefficients are ≥ d−2 · e−3d ≥ e−4d.

Proof. Note that the hypothesis of Theorem 5.7 implies the hypotheses of Lemmas 5.3,
5.4, 5.5. The final portion concerning the ZOC

r follows formally from (1), (2) (cf. the proof
of Theorem 3.3). Moreover, (2) is precisely what was proven above (cf. Lemma 5.5 for
the last part of (2)). Thus, it suffices to prove (1). To prove (1), it suffices to bound the
absolute value of the coefficient of each U

k[r′]
sc in ZCG

r (for r, r′ = 0, . . . , d − 1) by e3d. For
r′ /∈ RSemi

Crit , (as discussed above) the ZCG
r look exactly the same as the ZCG

r , so we obtain
the estimate “≤ ed (≤ e3d)” as in the proof of Theorem 3.3. For r′ ∈ RSemi

Crit , the coefficient
of U

k[r′]
sc has absolute value ≤ e3d by Lemma 5.6 (cf. the proof of Theorem 3.3). This

completes the proof of (1). ©

It thus remains to deal with the discrepancy between ZCG
r and the original ζCG

r . This
discrepancy may be dealt with exactly as in the proof of Lemma 2.1 in §2 (where we dealt
with deformations of the discrete Tchebycheff polynomials). Indeed, let

ζCG,μ
r

def=
∑
k∈Z

(
k + λr

r

)
· qΨ(k)−Ψ(k[r])

sc · UCrit(k)
sc · χ(ket)

= ZCG
r +

∑
k∈Z\(KCrit

⋃
KSemi)

(
k + λr

r

)
· qΨ(k)−Ψ(k[r])

sc · UCrit(k)
sc · χ(ket)

be the series obtained by restricting q
−Ψ(k[r])
sc · U−iχ

cv · ζCG
r to μd ⊆ (S1)sc. Let

ζμ def=
d−1∑
r=0

γr · ζCG,μ
r

be a C-linear combination (i.e., the γr ∈ C) of the ζ
CG,μ
r . Moreover, let us assume that
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Z
def=

d−1∑
r=0

γr · ZCG
r

satisfies ||Z|| = 1. Then we would like to bound ||ζμ|| from above and below. In the
following discussion, we assume that the hypotheses of Theorem 5.7 are satisfied. Then by
Theorem 5.7, (2), we obtain

|γr| ≤ n · e30·d

for r = 0, . . . , d − 1. On the other hand, by Lemma 4.2, for k ∈ Z\(KCrit

⋃
KSemi), we

have |k| ≥ 1
2d, Ψ(k)−Ψ(k[d−1]) ≥ 1

16 ·d · |k|. Thus, (by Lemmas 4.1, 5.1, and the estimate
Dist(k, F r(KCrit)) ≤ |k − Avg(F r(KCrit))| ≤ |k| + 1

2 ) we have:

∣∣∣ (k + λr

r

)
· qΨ(k)−Ψ(k[r])

sc

∣∣∣ ≤ (Dist(k, F r(KCrit)) + r − 1
r

)
· |qsc|Ψ(k)−Ψ(k[d−1])

≤ 2Dist(k,F r(KCrit))+r−1 · |qsc|
1
16 ·d·|k| ≤ 2|k|+

1
2+d−2 · |qor|

1
16 ·|k|

≤ 23·|k| · |qor|
1
16 ·|k| ≤ e3·|k|− 2π

16 ·Im(τor)·|k| ≤ e|k|·(3−
π
8 ·Im(τor))

Now let us assume that

C
def=

π

8
· Im(τor) − 3 ≥ 62 +

2
d
· log(n)

Then it follows that

||ζCG,μ
r − ZCG

r || ≤
∑

k∈Z\(KCrit

⋃
KSemi)

∣∣∣ (k + λr

r

)
· qΨ(k)−Ψ(k[r])

sc

∣∣∣
≤

∑
k∈Z\(KCrit

⋃
KSemi)

e−C·|k|

≤ 2 ·
∑

k≥ 1
2 d

e−C·k

≤ 2 · e− 1
2C·d · (1 − e−C)−1 ≤ 4 · e− 1

2 C·d

(since C ≥ 1 implies eC ≥ e ≥ 2, so (1 − e−C)−1 ≤ 2). Thus, since 1
2C ≥ 31 + log(n)

d , we
have:
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||ζμ − Z|| ≤
d−1∑
r=0

|γr| · ||ζCG,μ
r − ZCG

r ||

≤ d · (n · e30·d) · (4 · e− 1
2C·d)

≤ 1
2
· n · ed·(31− 1

2 C)

≤ 1
2
· n · e−log(n) =

1
2

(where we use that d ≥ 4 implies 8d ≤ ed). Thus, since ||Z|| = 1, we obtain

1
2
· ||Z|| =

1
2
≤ ||Z|| − ||Z − ζμ|| ≤ ||ζμ|| ≤ ||ζμ − Z|| + ||Z|| ≤ 3

2
≤ 2 = 2 · ||Z||

This is the desired bound on ||ζμ||. Thus, we have proven the following result, which is
the main result of the present §:

Theorem 5.8. Suppose that d ≥ 12, and

Im(τor) ≥
32
π

· log2(d) +
80
π

· n · log(d) +
16
π

· n · log(n) +
8
π
· 65

and let ζ
def=
∑d−1

r=0 γr · q−Ψ(k[r])
sc · ζCG

r be a C-linear combination (i.e., the γr ∈ C) of the
q
−Ψ(k[r])
sc · ζCG

r . Let us write
||ζ||et

for the L2(μd) norm (i.e., the norm for which U0
sc, U

1
sc, . . . , U

d−1
sc are orthonormal) of the

function (U−iχ
cv · ζ)|μd⊆(S1)sc . Then

(1) If the |γr| ≤ 1 for r = 0, . . . , d−1, then we have: ||ζ||et ≤ 2·d2·e3d ≤ e4d.

(2) If ||ζ||et ≤ 1, then the |γr| ≤ 2n · e30·d, for all r = 0, . . . , d − 1, and
|γr| ≤ 2 · e26·d if r /∈ RSemi

Crit .

In particular, if we orthonormalize the q
−Ψ(k[r])
sc · ζCG

r to form

ζOC
0 , . . . , ζOC

d−1

– which are unique if we stipulate that the leading coefficient of ζOC
r (i.e., the coefficient

of ζCG
r in the linear combination of ζCG

0 , . . . , ζCG
r that forms ζOC

r ) be positive – then the
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coefficients of the ζCG
r in each ζOC

r′ have absolute value ≤ 2n · e30d, and the absolute values
of the leading coefficients are ≥ e−4d.

Proof. One checks easily that the hypothesis of Theorem 5.8 implies both the hypothesis
of Theorem 5.7, as well as the assumption

π

8
· Im(τor) − 3 ≥ 62 +

2
d
· log(n)

made above. Then (1), (2) follow from the corresponding assertions of Theorem 5.7,
together with the inequalities

1
2
· ||Z|| ≤ ||ζμ|| ≤ 2 · ||Z||

derived above (which hold even if ||Z|| �= 1). The assertions concerning the ζOC
r follow

formally from (1), (2) (cf. the proof of Theorem 5.7). ©

Remark. Thus, stated in words, Theorem 5.8 asserts that:

If Im(τor) is sufficiently large (roughly ≥ the order of log2(d), when n is
held fixed), then up to a factor of order n · Cd (for some constant C),
the L2-norm on the complex vector space generated by the q

−Ψ(k[r])
sc ·ζCG

r

(for r = 0, . . . , d− 1) is the same as the norm for which these functions
q
−Ψ(k[r])
sc · ζCG

r (for r = 0, . . . , d − 1) are orthonormal.

Note that the factor of n in “n · Cd” is precisely the archimedean analogue of the scheme-
theoretic zero locus of the determinant given in Chapter VI, Theorem 4.1, (2) (cf. also the
Remark following Lemma 4.4). In some sense, of the three models (Hermite, Legendre,
and Binomial) discussed, the (full) binomial model is the closest archimedean analogue to
what is done in Chapter VI at finite primes. Unfortunately, however, the estimates for the
binomial model only hold when the elliptic curve in question is fairly close to infinity. This
degree of proximity, i.e., log2(d) when n is held fixed, is not so outrageously large in the
sense that, roughly speaking, Im(τor) should be regarded as being roughly on a par with d
in terms of size (cf. the discussion of “natural variables over F1” in Remark 2 at the end
of Chapter VII, §6). Thus, in some sense, to require that Im(τor) be at least of the order
of log2(d) is a “logarithmically weak” requirement on the proximity to infinity.
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§6. Relations Among Various Norms and Zeta Functions

In this §, we prepare for the discussion of the Hodge-Arakelov Comparison Isomorphism
in §7 below by relating the material of §1 through 5 of the present Chapter to the theory
of §4 through 6 of Chapter VII. That is to say, throughout Chapter VII and the present
Chapter, various canonical norms on function spaces, as well as various canonical zeta
functions were introduced. The reason that so many such objects were introduced was
because each one relates to a certain piece of the fundamental problem of relating the
natural metrics on the function spaces of “de Rham functions” and “étale functions” to
one another (cf. the Introduction to Chapter VII). Thus, the purpose of the present § is
to explain how to put these pieces together.

We continue with the notation of §5. In addition, we suppose for simplicity that

d ≥ 25

Let us review the situation that we are in. First of all, we have our “original” elliptic
curve Eor

def= (Gm)or/qZ
or, together with our “scaled” elliptic curve Esc

def= (Gm)sc/qZ
sc,

where qor = e2πiτor , qsc = e2πiτsc , τor = d · τsc, and (Gm)or = (Gm)sc. Thus, we may think
of Esc as a quotient

Eor
def= (Gm)or/qZ

or → Esc
def= (Gm)sc/qZ

sc

of Eor. The pull-back morphism on differentials thus induces a natural isomorphism

ιdiff : ωEor
∼= ωEsc

Note that this quotient map extends to a push-forward morphism on the universal exten-
sions of Eor, Esc:

0 −→ ωEor −→ E
†
or −→ Eor −→ 0⏐⏐�d·ιdiff

⏐⏐� ⏐⏐�
0 −→ ωEsc −→ E

†
sc −→ Esc −→ 0

One checks easily that the push-forward morphism induces the map d · ιdiff on ωEor =
ωEsc . In the following discussion, we would like to think of τEor = ω∨Eor

(respectively,
τEsc = ω∨Esc

) as the space of (linear) functions on the ωEor (respectively, ωEsc) portion

of E
†
or (respectively, E

†
sc). From this “function-theoretic” point of view, we obtain an

isomorphism

ιfunc : τEsc → τEor
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where ιfunc
def= (d · ιdiff)∨.

Next, we would like to consider various trivializations of τEor , τEsc . If we think of
Esc as the elliptic curve “E” of Chapter VII, §4,5, then we have the trivialization “θ∨”
(cf. Chapter VII, §4,5) of τEsc , which is determined up to multiplication by an element
∈ S1 ⊆ C× by the property that its norm with respect to the metric “|| ∼ ||τ” of Chapter
VII, §4, is 1. Let us denote this trivialization by ΘDR,sc. Put another way, if we regard
Esc as the “E” of Chapter VII, §4,5, then ΘDR,sc may be identified with the exterior
derivative of the function “TDR” on Chapter VII, §4,5. Similarly, we have a metric “|| ∼ ||τ”
(as in Chapter VII, §4) on τEor which gives rise to a trivialization ΘDR,or of τEor whose
norm is 1 and which may be normalized by requiring that it be a positive multiple of
ΘDR,sc ∈ τEsc

∼= τEor (where “∼=” is either ι∨diff or ιfunc – both give the same result since
they differ by a positive multiple). Since the metric “|| ∼ ||τ” of Chapter VII, §4, is defined
by integration, and integrating the pull-back to Eor of a (1, 1)-form on Esc differs by a factor
of d from integrating the form on Esc, we thus obtain that d

1
2 ·(ΘDR,or)∨ = ι−1

diff((ΘDR,sc)∨),
which implies (by taking the dual) d−

1
2 · ΘDR,or = ι∨diff(ΘDR,sc), hence (by multiplying by

d
1
2 ):

ΘDR,or = d−
1
2 · ιfunc(ΘDR,sc)

On the other hand, in Chapter VII, §5, we also considered the trivialization “ ∂
∂log(U)”

(where U is the standard coordinate on Gm), which gave rise to the function “TSW” of
Chapter VII, §5. Let us write ΘSW,sc (respectively, ΘSW,or) for the trivialization of ωEsc

(respectively, ωor) defined by ∂
∂log(Usc)

(respectively, ∂
∂log(Uor)

). If we think of the elliptic
curve “E” of Chapter VII, §5, as being Esc, then one may also think of ΘSW,sc as the
exterior derivative of the function “TSW” of Chapter VII, §5. In particular, it follows from
Chapter VII, Lemma 5.2, that

ΘDR,sc = {8π2 Im(τsc)}
1
2 · ΘSW,sc = d−

1
2 · Cor · ΘSW,sc

where Cor
def= {8π2 · Im(τor)}

1
2 . Similarly,

ΘDR,or = Cor · ΘSW,or

Remark. One convenient way to keep track of the various trivializations introduced above is

to think of them as functions on the “ωEor (respectively, ωEsc) portion” of E
†
or (respectively,

E
†
sc), hence as linear functions (well-defined up to some constant term, since E

†
or, E

†
sc are

torsors) on the d-torsion points of E
†
or (which map to the d-torsion points of E

†
sc). From

this point of view, we see that (if we neglect the constant term, then) ΘSW,or (respectively,
ΘSW,sc) takes values ∈ 1

d · Z (respectively, ∈ Z) on the d-torsion points (cf. Chapter III,

Corollary 5.9) of E
†
or. Thus, in summary, the values taken (if we neglect the constant term)

by these functions (trivializations) on the d-torsion of E
†
or are given by:
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ΘSW,sc : ∈ Z ΘDR,sc : ∈ Cor

d
1
2
· Z

ΘSW,or : ∈ 1
d · Z ΘDR,or : ∈ Cor

d · Z

As we will see in the following discussion, these factors of d, d
1
2 that occur are related to

various scaling issues, of the sort discussed at the end of Chapter VII, §3.

Next, we would like to apply the theory of Chapter VII, §5, relating the de Rham and
Schottky-Weierstrass canonical zeta functions in the case where the elliptic curve “E” (of
Chapter VII, §5) is Esc. First, let us write (S1)sc ⊆ (Gm)sc for the copy of (S1)sc in
(Gm)sc. Note that (S1)sc also injects into Esc via the projection (Gm)sc → Esc. Moreover,

(S1)sc ⊆ Esc lifts naturally (and uniquely!) to a closed subgroup (S1)sc ⊆ E
†
sc. Thus,

we may restrict the relations of Chapter VII, Theorem 5.3, to (S1)sc ⊆ E
†
sc. Note that

the functions “TSW” and “TDR” of Chapter VII, §5, are zero on (S1)sc ⊆ E
†
sc. (This

follows since the canonical sections of E
†
sc → Esc used to define “TSW” and “TDR” are

continuous homomorphisms, hence map (S1)sc ⊆ Esc into (S1)sc ⊆ E
†
sc.) Also, note that

although the theory of Chapter VII, §5, was only given in the case of a trivial character
χ, it generalizes immediately to the case of an arbitrary character χ (cf. Chapter IV,
§3, especially Theorems 3.2, 3.3), for instance, by “transport of structure” relative to
the automorphism of “E” given by translating by an appropriate torsion point (cf. the
discussion immediately preceding Chapter VII, Theorem 6.7). Thus, by Chapter VII,
Theorem 5.3, we obtain (for r ∈ Z≥0):

ζSS
r |(S1)sc =

r!
dr

· ζPD
r |(S1)sc =

r!
Cr

or · d
r
2
·

[r/2]∑
m=0

(π · u)m

m!
· ζDR

r−2m|(S1)sc

(where ζSS
r is as in Chapter VII, §6). Thus, in particular, if we think of ζSS

r as a section

of the line bundle Lχ
sc on Esc corresponding to χ (cf. Chapter VII, §6) over E

†
sc, then the

leading term of ζSS
r , i.e., the image of ζSS

r in (F r+1/F r)(R
E
†
sc

) ⊗OEsc
Lχ

sc, is equal to a

unimodular multiple (i.e., S1 ⊆ C×-multiple) of

1
Cr

or · d
r
2
· Θ⊗r

DR,sc =
1

Cr
or

· Θ⊗r
DR,or = Θ⊗r

SW,or

while the norm of ζSS
r with respect to the metric “|| ∼ ||L2

DR
” of Chapter VII, §4,5, which

we denote here by || ∼ ||DR,sc, satisfies (by Chapter VII, Corollary 5.4, and the fact that
1
dr ≤ 1

r! ):

||ζSS
r ||DR,sc ≤ ||ζSS

0 ||DR,sc ·
eπ

r!
·
(8π · r · d

Im(τor)

) r
2

= ||ζSS
0 ||DR,sc · eπ ·

(8π
3
2

Cor

)r

· (r · d)
r
2

r!
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Finally, by Chapter VII, Lemma 6.5 (where we take “P (−)” to be 1, and change the
variable of integration from “k” to x

def= { 2π
d · Im(τor)}

1
2 · k), we have:

||ζSS
0 ||2DR,sc = e

2π
d ·Im(τor)·(iχ/n)2 ·

( 4π · d
8π2 · Im(τor)

) 1
2
∫
R

e−x2
dx

= e
8π2
4πd ·Im(τor)·(iχ/n)2 · (4π · d)

1
2 · C−1

or · π 1
2 = 2π · (d/C2

or)
1
2 · e

(Cor·iχ/n)2

4πd

Thus:

||ζSS
r ||DR,sc ≤ 100 · (d/C2

or)
1
4 · e

(Cor·iχ/n)2

8πd · (50/Cor)r · (r · d)
r
2

r!

In the following discussion, we would like to think of the metric || ∼ ||DR,sc, as well as
the metrics || ∼ ||Tch; || ∼ ||w,μa

of §2, as being metrics on the space Γ(Esc,Lχ
sc⊗OEsc

R
E
†
sc

),

which we think of as the subspace

Γ(Esc,Lχ
sc ⊗OEsc

R
E
†
sc

) ↪→ L2((S1)sc)

(where the map “↪→” is obtained by dividing by the trivialization “U iχ
cv · θm”) generated by

ζSS
0 , . . . , ζSS

r , . . . (i.e., ζSS
0 and its derivatives).

On the other hand, let us write || ∼ ||SS for the metric on Γ(Esc,Lχ
sc ⊗OEsc

R
E
†
sc

) for

which the ζSS
r are orthonormal. Then by Chapter VII, Theorem 5.3, we have:

( d
1
2

Cor

)r

· ζDR
r |(S1)sc =

[r/2]∑
m=0

dr−m · (−π · u)m

C2m
or · m! · (r − 2m)!

· ζSS
r−2m|(S1)sc

which shows that (for r < d)

( d
1
2

Cor

)r

· ||ζDR
r ||SS ≤ e3d ·

[r/2]∑
m=0

πm

C2m
or

≤ e3d · r · {1 + (π/C2
or)}r

(where we use that

dr−m

m!(r − 2m)!
≤ dr−m

(r − m)!
·
(

r − m

m

)
≤ 2r · dr−m

(r − m)!

≤ e2r · dr−m

(r − m)r−m
≤ e2r+d ≤ e3d
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by Chapter VII, Lemmas 3.5, 3.6). Since, by Chapter VII, Corollary 4.6, Lemma 6.5, we
have:

||ζDR
r ||DR,sc ≥

( (2π)r

r!

) 1
2 · ||ζDR

0 ||DR,sc =
( (2π)r

r!

) 1
2 · e

(Cor·iχ/n)2

8πd · (2π)
1
2 · (d/C2

or)
1
4

we obtain:

||ζDR
r ||−1

DR,sc · ||ζDR
r ||SS ≤ e−

(Cor·iχ/n)2

8πd · (r!)
1
2

(2π)
r
2
· (Cor/d

1
2 )r+ 1

2 · r · {1 + (π/C2
or)}r · e3d

≤ e−
(Cor·iχ/n)2

8πd · (r! · d−r)
1
2

(Cor + π · C−1
or

(2π)
1
2

)r

· r · C1/2
or

d
1
4

· e3d

Thus, in summary:

Lemma 6.1. For r ≤ d, the metrics || ∼ ||DR,sc, || ∼ ||SS on Γ(Esc,Lχ
sc⊗OEsc

F r(R
E
†
sc

))

satisfy:

e
(Cor·iχ/n)2

8πd −3d · (dr/r!)
1
2 ·
( (2π)

1
2

Cor + π · C−1
or

)r

· (d 3
4 · r · C1/2

or )−1 · || ∼ ||SS ≤ || ∼ ||DR,sc

≤ e
(Cor·iχ/n)2

8πd · (r · d)
r
2

r!
· (50/Cor)r · 100 · (d5/C2

or)
1
4 · || ∼ ||SS

Proof. This follows immediately from the above inequalities: Indeed, if ||φ||SS ≤ 1 (where
φ ∈ Γ(Esc,Lχ

sc ⊗OEsc
F r(R

E
†
sc

))), then φ may be written as a linear combination of the

ζSS
r with complex coefficients ≤ 1. Thus, ||φ||DR,sc may be bounded using the bound for
||ζSS

r ||DR,sc obtain above. Similarly, if ||φ||DR,sc ≤ 1, then φ may be written as a linear
combination of the ||ζDR

r ||−1
DR,sc · ζDR

r with complex coefficients ≤ 1. Thus, ||φ||SS may be
bounded using the bound for ||ζDR

r ||−1
DR,sc · ||ζSS

r ||SS obtain above. ©

Remark. Note that (for r ≤ d), we have:

(dr/r!)
1
2 · d−2 · e−3d ≥ e−4d

(r · d)
r
2

r!
· d2 ≤ er · (r · d)

r
2

rr
· d2 ≤ er · (d/r)

r
2 · d2 ≤ er · d2 · e d

2 ≤ e2d
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(cf. Chapter VII, Lemmas 3.5, 3.6), where we use that d2 ≤ e
d
2 since d ≥ 10. It thus

follows that:

If τor is restricted to vary in a compact subset of the upper half-plane,
then || ∼ ||SS and || ∼ ||DR,sc differ from each other by a factor ≤
constant · e4d.

In fact, even if τor is not restricted to vary inside a compact set, the “constant” in this

statement is bounded by (some absolute constant)d times e
(Cor·iχ/n)2

8πd · (Cor +C−1
or )d. Note,

in particular, that:

Despite the fact that the “leading term” of ζSS
r (cf. the above discussion)

goes like 1
Cr

or
· Θ⊗r

DR,or = Θ⊗r
SW,or, the absolute value of ζSS

r with respect
to || ∼ ||DR,sc (a norm which is based on a ΘDR,sc-type scaling of R

E
†
sc

,

not a ΘDR,or-type scaling!) goes (at least for compactly varying Im(τor),
and up to a factor of constant · e4d) like ≈ 1.

This discrepancy of roughly a factor d
r
2 (when Im(τor) varies compactly) in the portion

of torsorial degree r, i.e., a scaling factor of d
1
2 , is the phenomenon of analytic torsion –

cf. Remark 1 following Chapter VII, Corollary 4.6, which concerns a factor of (r!)
1
2 ≈ d

r
2

(as r → d) in the portion of torsorial degree r. This analytic torsion may be regarded as
the analogue at the infinite prime of the factors of 1

r! that must be added to the integral
structure of the portion of torsorial degree r in the finite prime case (cf., e.g., Chapter V,
Theorem 3.1).

Next, we would like to recall from §2 the relationship between || ∼ ||SS and || ∼ ||Tch.
First, let us recall from the first part of the proof of Lemma 2.1 that if ||φ||Tch = 1 (for
φ ∈ Γ(Esc,Lχ

sc ⊗OEsc
F r(R

E
†
sc

)), r ≤ d), then φ may be written as a linear combination of

the ζSS
r′ (where r′ < r) with complex coefficients of absolute value

≤ r
7
2 · e4r

Thus, we conclude that on Γ(Esc,Lχ
sc ⊗OEsc

F r(R
E
†
sc

)) (where r ≤ d), we have:

|| ∼ ||SS ≤ r
9
2 · e4r · || ∼ ||Tch

On the other hand, from the definition of || ∼ ||Tch, we have

||ζSS
r ||2Tch =

1
d
·

d−1∑
j=0

∣∣∣(j/d) − ld

∣∣∣2r

≤ 1
d
·

d−1∑
j=0

1 = 1
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where ld is as in §2, hence satisfies 0 ≤ ld ≤ 1
2 . Thus, on Γ(Esc,Lχ

sc⊗OEsc
F r(R

E
†
sc

)) (where

r ≤ d), we have:

|| ∼ ||Tch ≤ r · || ∼ ||SS

We summarize this as follows:

Lemma 6.2. For r ≤ d, the metrics || ∼ ||Tch, || ∼ ||SS on Γ(Esc,Lχ
sc ⊗OEsc

F r(R
E
†
sc

))

satisfy:

r−1 · || ∼ ||Tch ≤ || ∼ ||SS ≤ r
9
2 · e4r · || ∼ ||Tch

while the metrics || ∼ ||Tch, || ∼ ||DR,sc on Γ(Esc,Lχ
sc ⊗OEsc

F r(R
E
†
sc

)) satisfy:

e
(Cor·iχ/n)2

8πd −3d · (dr/r!)
1
2 ·
( (2π)

1
2

Cor + π · C−1
or

)r

· (d 3
4 · r2 · C1/2

or )−1 · || ∼ ||Tch

≤ || ∼ ||DR,sc

≤ e
(Cor·iχ/n)2

8πd · (r · d)
r
2

r!
· (e8/Cor)r · 100 · (d12/Cor)

1
2 · || ∼ ||Tch

Finally, the metrics || ∼ ||w,μa
(cf. §2), || ∼ ||DR,sc on Γ(Esc,Lχ

sc ⊗OEsc
F r(R

E
†
sc

)) satisfy:

e
(Cor·iχ/n)2

8πd −3d · (dr/r!)
1
2 ·
( (2π)

1
2

e4 · a2 · (Cor + π · C−1
or )

)r

· (d8 · C1/2
or )−1 · || ∼ ||w,μa

≤ || ∼ ||DR,sc

≤ e
(Cor·iχ/n)2

8πd · (r · d)
r
2

r!
· (e8/Cor)r · 200 · (d12/Cor)

1
2 · || ∼ ||w,μa

where a is a positive integer satisfying a ≥ 8 + (π
4 · Im(τor))−1.

Remark. Thus, stated in words, the above Lemma asserts that:

When Im(τor) varies compactly, || ∼ ||DR,sc and || ∼ ||w,μa
differ by at

most a factor of (constant)d.

Thus, || ∼ ||DR,sc; || ∼ ||SS; || ∼ ||Tch; || ∼ ||w,μa
belong to “the same equivalence class”

– i.e., in the sense that when Im(τor) varies compactly, they differ by at most a factor of
(constant)d.
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Similarly, we may recall the relationship between || ∼ ||SS and the ζCG
r , as follows. Let

us write

|| ∼ ||CG (respectively, || ∼ ||qCG)

for the metric on Γ(Esc,Lχ
sc⊗OEsc

F d(R
E
†
sc

)) for which the ζCG
r (respectively, q

−Ψ(k[r])
sc ·ζCG

r

– notation of §3,4,5), where r = 0, . . . , d − 1, are orthonormal. Recall from the proof of
Chapter VII, Lemma 6.2 (i.e., in essence, Chapter VII, Proposition 3.3), that ζCG

r is a
linear combination of ζSS

0 , . . . , ζSS
r with complex coefficients of absolute value ≤ e2r+d.

Thus,

||ζCG
r ||SS ≤ (r + 1) · e3d

In particular, on Γ(Esc,Lχ
sc ⊗OEsc

F r(R
E
†
sc

)) (where r ≤ d), we have:

|| ∼ ||SS ≤ r2 · e3d · || ∼ ||CG

On the other hand, if we consider a linear combination of ζCG
0 , . . . , ζCG

r whose || ∼ ||Tch =
d−1, then we see that the issue of bounding the coefficients of such a linear combination
is exactly the same as the situation considered in §3, except with |qsc| = 1. (Indeed,
note that if we set |qsc| = 1, then in the context of §3, || ∼ ||Tch = d−1 means that the
usual L2((S1)sc)-norm of the corresponding linear combination of ZCG

0 , . . . , ZCG
r is = 1.)

Thus, by specializing what we did in §3 to the case where |qsc| = 1, we see that the
coefficients of this linear combination are bounded by a sum of 4r terms, each of which
has absolute value ≤ r2r (cf. the bounding of the “binomial coefficient portion of the
C[r, r1] · C[r1, r2] · . . . · C[rj−1, rj ]” in §3). Thus, the coefficients of the linear combination
under consideration have absolute value ≤ 4r · r2r. In particular, we obtain that on
Γ(Esc,Lχ

sc ⊗OEsc
F r(R

E
†
sc

)) (where r ≤ d), we have:

|| ∼ ||CG ≤ r · 4r · r2r · d · || ∼ ||Tch

Finally, the leading term of ζCG
r is equal to the leading term of ζPD

r . That is, in summary:

Lemma 6.3. For r ≤ d, the metrics || ∼ ||CG, || ∼ ||SS on Γ(Esc,Lχ
sc ⊗OEsc

F r(R
E
†
sc

))

satisfy:

d−1 · 4−r · r−2r−2 · || ∼ ||CG ≤ || ∼ ||SS ≤ r2 · e3d · || ∼ ||CG
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and (for 0 ≤ r ≤ d − 1) ζCG
r has the same leading term (i.e., image in Γ(Esc,Lχ

sc ⊗OEsc

(F r+1/F r)(R
E
†
sc

))) as dr

r! · ζSS
r . On the other hand, (for r ≤ d) the metrics || ∼ ||CG,

|| ∼ ||DR,sc on Γ(Esc,Lχ
sc ⊗OEsc

F r(R
E
†
sc

)) satisfy:

e
(Cor·iχ/n)2

8πd −3d · (dr/r!)
1
2 · r−2r−2 ·

( (2π)
1
2

4(Cor + π · C−1
or )

)r

· (d2 · r · C1/2
or )−1 · || ∼ ||CG

≤ || ∼ ||DR,sc

≤ e
(Cor·iχ/n)2

8πd · (r · d)
r
2

r!
· (e7/Cor)d · 100 · (d7/Cor)

1
2 · || ∼ ||CG

and (for 0 ≤ r ≤ d − 1) ζCG
r has the same leading term (i.e., image in Γ(Esc,Lχ

sc ⊗OEsc

(F r+1/F r)(R
E
†
sc

))) as d
r
2

Cr
or·r!

· ζDR
r .

Remark. Thus, stated in words, the above Lemma asserts that:

When Im(τor) varies compactly, the ||ζCG
r ||DR,sc are bounded by a fac-

tor of (constant)d, but if one expands ζCG
r in terms of an orthonormal

basis for || ∼ ||DR,sc, the resulting coefficients have rather large absolute
values, i.e., of the order dconstant·d.

Put another way, whereas || ∼ ||DR,sc; || ∼ ||SS; || ∼ ||Tch; || ∼ ||w,μa
belong to “the same

equivalence class” – i.e., in the sense that when Im(τor) varies compactly, they differ by at
most a factor of (constant)d – the metric || ∼ ||CG lies outside this equivalence class. That
is to say, it is bounded below by metrics in this equivalence class, but not above. Moreover,
this obstruction to bounding it above by metrics in the said equivalence class arises not
from letting the elliptic curve in question degenerate, but from the combinatorial portion
of the coefficients involved.

Finally, we consider the Hermite model. Let us write

|| ∼ ||HMd

for the metric on Γ(Esc,Lχ
sc ⊗OEsc

F d(R
E
†
sc

)) for which

||P (δ∗) · ζ0||2HMd

def=
∫
R

∣∣∣P (s)
∣∣∣2 · e− 1

2 (s/γd)2 · ds

where γd
def= {d/4π ·Im(τor)}

1
2 (as in Chapter VII, Theorem 6.7). Thus, the ζHMd

0 , . . . , ζHMd

d−1

(of Chapter VII, Theorem 6.7) are orthogonal for || ∼ ||HMd
, and γ−1

d · ||ζHMd
r ||2HMd

=
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(2π)
1
2 · r!. Recall that the ζHMd

r are the canonical zeta functions associated to the (scaled)
Hermite polynomials

Hr(s/γd)

where Hr(−) is as in Chapter VII, Proposition 2.2. Let us write

|| ∼ ||R,sc

for the metric on Γ(Esc,Lχ
sc ⊗OEsc

F d(R
E
†
sc

)) denoted by || ∼ ||L2(Esc) in Chapter VII, §6,

and by || ∼ ||L2
R

in Chapter VII, §4. Note that

||ζSS
0 ||2R,sc = ||ζSS

0 ||2DR,sc = e
2π
d ·Im(τor)·(iχ/n)2 ·

( d

4π · Im(τor)

) 1
2
(2π)

1
2

= (2π)
1
2 · γd · e 2π

d ·Im(τor)·(iχ/n)2

(cf. the discussion preceding Lemma 6.1), and

∣∣∣∣∣∣ ( r!
(2π)

r
2

)
· ζDR

r

∣∣∣∣∣∣2
R,sc

= r! · ||ζDR
0 ||2R,sc = (2π)

1
2 · r! · γd · e 2π

d ·Im(τor)·(iχ/n)2

(cf. Chapter VII, Theorem 4.5). Now, if we write

||ζ||et

(as in Theorem 5.8) for the L2(μd) norm (i.e., the norm for which U0
sc, U

1
sc, . . . , U

d−1
sc

are orthonormal) of the function (U−iχ
cv · ζ)|μd⊆(S1)sc , then we obtain from Chapter VII,

Theorem 6.7, that:

Lemma 6.4. If we fix a nonnegative integer r ≤ d and let d → ∞, then on
Γ(Esc,Lχ

sc ⊗OEsc
F r(R

E
†
sc

)), we have:

lim
d→∞

γ
− 1

2
d · || ∼ ||et = lim

d→∞
γ
− 1

2
d · || ∼ ||HMd

= lim
d→∞

γ
− 1

2
d · || ∼ ||R,sc

(where all three sides are finite) and || ∼ ||R,sc ≤ || ∼ ||DR,sc ≤ eπ+r · || ∼ ||R,sc.
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Proof. Note that the inequalities relating || ∼ ||R,sc and || ∼ ||DR,sc result from Chapter
VII, Corollary 4.6 (for ρ = 1). ©

§7. The Comparison Isomorphism at the Infinite Prime

In this §, we complete the proof of a theorem, which is the main theorem of this paper,
concerning the behavior of the comparison isomorphism of Chapter VI, Theorem 3.1, at all
the primes of a number field. The behavior of this comparison isomorphism at finite primes
is discussed in Chapter VI, Theorem 4.1; the behavior of this comparison isomorphism at
archimedean primes is the general topic of Chapter VII and the present Chapter. We
refer to the result which encompasses integrality issues at all primes of a number field
as the Hodge-Arakelov Comparison Isomorphism (cf. the Introduction to this Chapter).
In the present §, we complete the archimedean portion of this result, which consists of
showing that the natural metrics on the function spaces of “de Rham functions” and
“étale functions” are close to one another in three senses. These three senses correspond,
respectively, to the Hermite, Legendre, and Binomial Models treated in Chapter VII and
the present Chapter.

We continue with the notation of §5. Write Lχ
or

def= Lχ
sc|Eor . Thus, Lχ

or is a line bundle
of degree d on Eor. Let

G def= GLχ
or

be the theta group associated to this line bundle (cf. Chapter IV, §1). Let us write

GS1 ⊆ G

for the maximal compact subgroup. Thus, we have an exact sequence

0 → S1 → GS1 → KLχ
or
→ 0

Note that the kernel of Eor → Esc, together with the line bundle Lχ
sc, define a Lagrangian

subgroup (cf. Chapter IV, the Remark following Theorem 1.4) H ⊆ G. Suppose that V is
an irreducible C[G]-module (such that Gm ⊆ G acts on V in the usual fashion). Thus, V
is a d-dimensional complex vector space, and the subspace of H-invariants V H ⊆ V is a
1-dimensional complex subspace. Let v ⊆ V H be nonzero.

Lemma 7.1. There exists a unique GS1-invariant Hermitian metric (−,−) on V such
that (v, v) = 1.
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Proof. Write KH ⊆ KLχ
or

for the image of H in KLχ
or

. Let H ′ ⊆ G be a finite cyclic
subgroup of order d with the property that the image KH′ of H ′ in KLχ

or
is such that

KLχ
or

= KH × KH′ . (It is not difficult to see that such an H ′ always exists – cf., e.g.,
Chapter IV, Example 1.2). Since V is irreducible, it follows (cf. Chapter IV, Example 1.2)
that

V =
⊕
g∈H′

C · g(v)

For g, g′ ∈ H ′ such that g �= g′, define (g(v), g(v)) def= 1, (g(v), g′(v)) def= 0. This gives
us a well-defined metric (−,−) on V . On checks easily that this metric is H ′-invariant.
Because of the well-known structure of G, (cf. Chapter IV, §1), it follows that if g ∈ H,
g′ ∈ H ′, then g(g′(v)) = λ · g′(g(v)) = λ · g′(v), where λ ∈ S1 ⊆ C×. Thus, it is clear that
H also preserves this metric. Thus, it follows that this metric is GS1-invariant. Uniqueness
follows from the fact that V is irreducible as an GS1 -module. ©

Lemma 7.2. Let {M ; (−,−)M} be a pair consisting of a GS1-module M and a GS1-
invariant metric (−,−)M on M . Then the correspondence

{M ; (−,−)M} �→ {MH ; (−,−)MH
def= (−,−)M |MH}

given by taking H-invariants is an equivalence of categories (cf. Chapter IV, Theorem 1.4)
between the category of finite dimensional (i.e., over C) C[GS1 ]-modules equipped with GS1-
invariant Hermitian metrics and the category of finite dimensional complex vector spaces
equipped with Hermitian metrics.

Proof. Indeed, the functor “�→” is clearly well-defined. If {N ; (−,−)N} is a finite di-
mensional complex vector space equipped with a Hermitian metric, and {V ; (−,−)V } is
a C[GS1 ]-module as in Lemma 7.1 equipped with the metric of Lemma 7.1 (relative to
some v ∈ V H), then N ⊗C V admits a natural structure of GS1-module (where g ∈ GS1

acts by g(α ⊗ β) = α ⊗ g(β), for α ∈ N , β ∈ V ), as well as a natural metric (obtained
by tensoring (−,−)N with (−,−)V ), which is clearly GS1-invariant. Moreover, it is clear
that “�→” associates {N ⊗ V ; (−,−)N⊗V } to the pair {N ; (−,−)N}. Since maps between
“{N ; (−,−)N}’s” clearly induce maps between “{N ⊗ V ; (−,−)N⊗V }’s,” we thus see that
the functor “�→” is full and essentially surjective. Faithfulness follows from Chapter IV,
Theorem 1.4. ©

Thus, applying Lemma 7.2 shows that the various metrics:

|| ∼ ||DR,sc; || ∼ ||R,sc; || ∼ ||SS; || ∼ ||Tch
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|| ∼ ||w,μa
; || ∼ ||et; || ∼ ||CG; || ∼ ||qCG

on the space Γ(Esc,Lχ
sc⊗OEsc

F d(R
E
†
sc

)) that we discussed in §5, 6 naturally define metrics

on the space Γ(Eor,Lχ
or ⊗OEsc

F d(R
E
†
sc

)). (By abuse of notation) we shall denote the

resulting metrics on Γ(Eor,Lχ
or ⊗OEsc

F d(R
E
†
sc

)) by the same names.

Note that the morphism E
†
or → E

†
sc considered in §6 defines an isomorphism

E
†
or,[d]

∼= E†
sc ×Esc Eor

(where E
†
or,[d] is as in Chapter V, §2) which, if we identify ωEor with ωEsc via ιdiff (cf.

the discussion at the beginning of §6), induces an isometry between ωEor ⊆ E
†
or,[d] and

ωEor = ωEsc ⊆ E
†
sc×Esc Eor – i.e., both may be identified naturally with “d times the ωEor ⊆

E
†
or.” Thus, we may naturally identify Γ(Eor,Lχ

or ⊗OEsc
F r(R

E
†
sc

)) with Γ(Eor,Lχ
or ⊗OEor

F r(R
E
†
or,[d]

)). Note, moreover, that these spaces Γ(Eor,Lχ
or ⊗OEor

F r(R
E
†
or,[d]

)) are exactly

the spaces the appear in the domain of the evaluation map of Chapter VI, Theorem 4.1,
(2) (when applied to Eor).

Next, let us consider the action of Z on H
def= {τ ∈ C | Im(τ) > 0} defined by letting

1 ∈ Z act as τ �→ τ + 1. Write

T∞ def= H/Z

for the quotient of H by this action. Thus, the function q
def= exp(2πiτ) defines a biholo-

morphic isomorphism of T∞ with the punctured unit disk {z ∈ C | 0 < |z| < 1}. In the
present context, we would like to think of T∞ as a covering space of the analytic stack
Man

1,0 = H/SL2(Z) (where the quotient H/SL2(Z) is the quotient of H by the standard
action of SL2(Z) in the sense of analytic stacks).

Then let us observe that as the moduli of Eor vary (i.e., where take “q” in the preceding
paragraph to be qor), the metrics defined above all descend naturally from H to T∞. (Indeed,
this follows immediately from the definitions.) Moreover, I claim that:

The metrics || ∼ ||DR,sc; || ∼ ||R,sc; || ∼ ||et descend naturally to Man

1,0.

Indeed, || ∼ ||R,sc is defined by using the canonical real analytic section (κsc)R : (Esc)R →
(E†

sc)R (which defines a real analytic splitting of R
E
†
sc

) to restrict sections of Lχ
sc over E

†
sc
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to sections over Lχ
sc. On the other hand, one checks easily (for instance, by considering

torsion points) that the canonical real analytic splitting (κor)R : (Eor)R → (E†
or)R is

compatible with (κsc)R with respect to the natural morphism E
†
or → E

†
sc. Moreover, (κor)R

manifestly descends from H to Man

1,0. On the other hand, the metric with translation-
invariant curvature on Lχ

sc (that was used in Chapter VII, §4) pulls back to a metric with
translation-invariant curvature on Lχ

or. Since metrics with translation-invariant curvature
are unique up to multiplication by a positive real number, we thus see that such a metric
descends from H to Man

1,0. Thus, in summary, all the ingredients used to define || ∼ ||R,sc

descend naturally to Man

1,0, so we conclude that || ∼ ||R,sc itself descends naturally to
Man

1,0.

Similarly, the only additional object used to define || ∼ ||DR,sc is the metric on ωEsc

defined in Chapter VII, §4, but this metric is equal to d−
1
2 times the analogously defined

metric on ωEor (which manifestly descends to Man

1,0) – cf. the discussion at the beginning
of §6 involving ΘDR,sc = d

1
2 · ΘDR,or. Thus, || ∼ ||DR,sc also descends naturally to Man

1,0.

Finally, the metric on || ∼ ||et on Γ(Eor,Lχ
or ⊗OEor

F r(R
E
†
or,[d]

)) is clearly equal to the

metric obtained as follows: Since we have a natural inclusion dEor ⊆ E
†
or,[d] of the d-torsion

points dEor of Eor in E
†
or,[d], we may restrict sections s ∈ Γ(Eor,Lχ

or ⊗OEor
F r(R

E
†
or,[d]

)) to

dEor to obtain sections s|
dEor ∈ Lχ

or|dEor . Then

||s||2et =
1
d2

·
∑

α∈dEor

|s(α)|2

(where | ∼ | is the chosen metric on Lχ
or with translation-invariant curvature), which

manifestly descends to Man

1,0. This completes the proof of the claim.

Next, we pause to take a closer look at the metric || ∼ ||R,sc on Γ(Eor,Lχ
or ⊗OEor

F r(R
E
†
or,[d]

)). Note that we have a natural surjection:

Γ(Eor,Lχ
or ⊗OEor

F r+1(R
E
†
or,[d]

)) → Γ(Eor,Lχ
or ⊗OEor

(F r+1/F r)(R
E
†
or,[d]

))

= (d · τEor)
r ⊗ Γ(Eor,Lχ

or)

Moreover, since all the metrics dealt with here are GS1-invariant, it follows that, if we equip
d · τEor with its natural metric (i.e., the metric for which ΘDR,or has norm d−1), then the
metric induced by || ∼ ||R,sc on (d · τEor)

r ⊗Γ(Eor,Lχ
or) is equal to some constant times the

metric induced by || ∼ ||R,sc on Γ(Eor,Lχ
or). By Chapter VII, Theorem 4.5, it follows that

this constant is (d−1 ·ΘDR,or/ΘDR,sc)r ·r! ·
(

(2π)r

r!

) 1
2
. Since (d−1 ·ΘDR,or/ΘDR,sc)r = d−

3r
2 ,

we thus obtain:
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Lemma 7.3. We have:

Metric induced by || ∼ ||R,sc on (d · τEor)
r ⊗ Γ(Eor,Lχ

or)

= Metric induced by
( (2π)r · r!

d3r

) 1
2 · || ∼ ||R,sc on Γ(Eor,Lχ

or)

Remark. The meaning of Lemma 7.3 is the following: We saw in Chapter VI, Theorem
4.1, that at finite primes, the necessary modification to the integral structure of the space
“(d · τEor)

r ⊗ Γ(Eor,Lχ
or)” that allows one to obtain an exact comparison isomorphism is

a factor of (r!)−1 (cf. Chapter V, Theorem 3.1). Thus, by the product formula, assuming
that the modifications to the integral structure are distributed evenly with respect to r,
one expects that the modification to the integral structure to “(d · τEor)

r ⊗ Γ(Eor,Lχ
or)”

at the infinite primes should be of the order of (r!)−1 ≈ (d!)−1 (as r → d) (cf. the
discussion of the “Fundamental Combinatorial Model” in Chapter VII, §3, especially the
proof of Proposition 3.4). On the other hand, Lemma 7.3 states that in fact, for the metric
|| ∼ ||R,sc (hence also for || ∼ ||DR,sc – by Lemma 6.4), the corresponding modification to
the integral structure is roughly

( (2π)r · r!
d3r

) 1
2 ≈ (d−3r · r!) 1

2 ≈ (d!)−1

(where we ignore factors of the order (constant)d) as r → d. Moreover, let us recall that
these “modifications to the integral structure” are also known as analytic torsion. Thus,
in summary:

Lemma 7.3 asserts that for the metrics || ∼ ||DR,sc, || ∼ ||R,sc, the
resulting analytic torsion at the infinite prime is roughly the same as
the analytic torsion that one would expect from applying the product
formula (of elementary number theory) to the analytic torsion at the
finite primes.

Put another way, Lemma 7.3 is the analogue for general smooth elliptic curves of Chapter
VII, Proposition 3.4 (which, in effect, concerns “degenerate elliptic curves”). In particular,
Lemma 7.3 leads one to suspect that:

The metrics || ∼ ||DR,sc, || ∼ ||R,sc are natural (rough) candidates for (at
least the “combinatorial” or “arithmetic” portion – i.e., the portion that
does not arise from allowing the elliptic curve in question to degenerate
– of) the integral structure on

Γ(Eor,Lχ
or ⊗OEor

F d(R
E
†
or,[d]

))
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arising from the “étale side” of the comparison isomorphism, i.e., the
metric || ∼ ||et.

The extensive calculations of Chapter VII and the present Chapter imply that this intuitive
argument based on the product formula does, in fact, give the right answer:

Theorem 7.4. (The Comparison Isomorphism at the Infinite Prime) Let
E

def= Gm/qZ (where q = exp(2πiτ) ∈ T∞) be an elliptic curve over C. Let d,m ≥ 1 be
integers such that m does not divide d; write n

def= 2m. Let

L def= OE(d · [η])

where η ∈ E is a point of order equal to m. Write E
†
[d] for the result of pushing forward

the universal extension E† → E of E by the map ωE → ωE given by multiplication by d.
Write dE ⊆ E for the subscheme of d-torsion points; thus, we have a natural inclusion

dE ⊆ E
†
[d]. Consider the Comparison Isomorphism

Ξ : Γ(E,L ⊗OE
F d(R

E
†
[d]

)) ∼= L|
dE

of Chapter VI, Theorem 4.1 (given by restriction sections of L over E
†
[d] to dE ⊆ E

†
[d]).

Choose a metric | ∼ |L on L whose curvature is translation-invariant. Let us regard L|
dE

as equipped with the L2-metric defined by | ∼ |L, i.e.:

||s||2 def=
1
d2

·
∑

α∈dE

|s(α)|2

for s ∈ L|
dE. Write || ∼ ||et for the “étale metric,” i.e., the metric on Γ(E,L ⊗OE

F d(R
E
†
[d]

)) induced by this L2-metric. On the other hand, the canonical real analytic

splitting κR : ER → (E†
[d])R (i.e., the unique continuous section which is a group homo-

morphism) defines a metric || ∼ ||R on Γ(E,L ⊗OE
F d(R

E
†
[d]

)) by restricting sections of

holomorphic sections of L over E
†
[d] to real analytic sections of L over E, where one has

the L2-metric:
||s||2R

def=
∫

E

|κ∗R(s)|2L · dμ

(where s ∈ Γ(E,L ⊗OE
F d(R

E
†
[d]

)), and dμ is the unique translation-invariant (1, 1)-form

whose integral is 1). Finally, the section κR : ER → (E†
[d])R determines a real analytic

direct sum decomposition
(R

E
†
[d]

)R ∼=
⊕
r≥0

τ⊗r
E ⊗OER
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(where the subscript “R’s” denote that the decomposition is in the real analytic category).
If we use this decomposition to write s ∈ Γ(E,L⊗OE

F d(R
E
†
[d]

)) as s = s[0] + s[1] + . . . +

s[r] + . . ., and, moreover, equip ωE with the metric given by:

||α||2 def= d ·
∫

E

α ∧ α

then we obtain another metric, the “de Rham metric” || ∼ ||DR, on Γ(E,L ⊗OE

F d(R
E
†
[d]

)):

||s||DR
def=

∑
r≥0

∫
E

|s[r]|2L · dμ

(cf. Chapter VII, §4, for more details).

These metrics satisfy:

|| ∼ ||R ≤ || ∼ ||DR ≤ eπ+r · || ∼ ||R

Moreover,

(1) (Hermite Model) If we fix a nonnegative integer r ≤ d and let d → ∞, then on
Γ(E,L ⊗OE

F r(R
E
†
[d]

)), we have:

lim
d→∞

γ
− 1

2
d · || ∼ ||et = lim

d→∞
γ
− 1

2
d · || ∼ ||HMd

= lim
d→∞

γ
− 1

2
d · || ∼ ||R

Here γd
def=
{

d
4π·Im(τ)

} 1
2
, and || ∼ ||HMd

is the metric on the space Γ(E,L⊗OE
F r(R

E
†
[d]

))

defined by considering Hermite polynomials scaled by γd in the derivatives of the theta
functions ∈ Γ(E,L) (cf. §6 for more details on || ∼ ||HMd

).

(2) (Legendre Model) There is a natural metric || ∼ ||Tch on Γ(E,L ⊗OE
F d(R

E
†
[d]

))

which admits a natural orthonormal basis obtained by considering discrete Tchebycheff
polynomials (cf. Chapter VII, Proposition 3.1) scaled by d in the derivatives of the
theta functions ∈ Γ(E,L) (cf. §2 for more details on || ∼ ||Tch). In the limit, as d → ∞,
with this scaling, these polynomials converge to the Legendre polynomials. Moreover, if
d ≥ 25, then for r ≤ d, the metrics || ∼ ||Tch; || ∼ ||DR on Γ(E,L ⊗OE

F r(R
E
†
[d]

)) satisfy:

|q|− 1
2d ·(iχ/n)2

d3 · C1/2 · e5d · (C + C−1)r
· || ∼ ||Tch ≤ || ∼ ||DR

≤
(e5 · d6

C
1
2

)
·
(e10

C

)d

· |q|− 1
2d ·(iχ/n)2 · || ∼ ||Tch
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where C
def= {8π2 · Im(τ)} 1

2 . Moreover, if a is a natural number, then there is a natural
metric || ∼ ||w,μa

on Γ(E,L⊗OE
F d(R

E
†
[d]

)) obtained by averaging || ∼ ||et with respect to

translates by the a · d-torsion points of E = Gm/qZ arising from the torsion points of Gm

(cf. §1,2, for more details). The metrics || ∼ ||w,μa
; || ∼ ||DR on Γ(E,L ⊗OE

F r(R
E
†
[d]

))

satisfy:

|q|− 1
2d ·(iχ/n)2

d8 · C1/2 · e9d · {a2 · (C + C−1)}r
· || ∼ ||w,μa

≤ || ∼ ||DR

≤
(e6 · d6

C
1
2

)
·
(e10

C

)d

· |q|− 1
2d ·(iχ/n)2 · || ∼ ||w,μa

whenever a ≥ 8 + (π
4 · Im(τ))−1.

(3) (Binomial Model) There is a natural metric || ∼ ||CG on Γ(E,L ⊗OE
F d(R

E
†
[d]

))

which admits a natural orthonormal basis obtained by considering certain binomial coef-
ficient polynomials (cf. Chapter V, Theorem 4.8) (scaled by 1 = d0) in the derivatives
of the theta functions ∈ Γ(E,L) (cf. §2 for more details on || ∼ ||Tch). If d ≥ 25, for
r ≤ d, then the metrics || ∼ ||CG, || ∼ ||DR on Γ(E,L ⊗OE

F d(R
E
†
[d]

)) satisfy:

|q|− 1
2d ·(iχ/n)2

e3d · r2r · d5 · C1/2 · {4π(C + C−1)}r
· || ∼ ||CG ≤ || ∼ ||DR

≤
(e5 · d4

C
1
2

)
·
(e9

C

)d

· |q|− 1
2d ·(iχ/n)2 · || ∼ ||CG

Moreover, there is a natural metric || ∼ ||qCG on Γ(E,L ⊗OE
F d(R

E
†
[d]

)) which admits a

natural orthonormal basis obtained by dividing the binomial coefficient polynomials
in the derivatives of the theta functions considered above by certain powers of q. If
d ≥ 12, and Im(τ) ≥ 200{log2(d) + n · log(d) + n · log(n)}, then this metric satisfies:

n−1 · e−32d · || ∼ ||qCG ≤ || ∼ ||et ≤ e4d · || ∼ ||qCG

In particular, for each of these models, the combinatorial/arithmetic portion of the
analytic torsion (i.e., the portion not arising from letting the elliptic curve E degenerate)
induced on Γ(E,L ⊗OE

(F r+1/F r)(R
E
†
[d]

)) by the metrics || ∼ ||R; || ∼ ||DR; || ∼ ||HMd
;

|| ∼ ||Tch; || ∼ ||w,μa
; || ∼ ||qCG (in their respective domains of applicability) as r → d,

goes (modulo factors of the order (constant)d) as

≈ (d!)−1
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which is precisely what you would expect by applying the product formula to the compu-
tation of the “analytic torsion” in the finite prime case (cf. Chapter V, Theorem 3.1;
Chapter VI, Theorem 4.1; Chapter VII, Proposition 3.4). Finally, all of the metrics ap-
pearing above on the space Γ(E,L⊗OE

F r(R
E
†
[d]

)) are invariant with respect to the maximal

compact subgroup GS1 ⊆ GL of the theta group GL associated to L.

Proof. Note that relative to the discussion preceding Theorem 7.4, we replace Eor (re-
spectively, qor; DR, sc; R, sc) by the simpler notation E (respectively, q; DR; R) in the
statement of Theorem 7.4. The inequality relating || ∼ ||R; || ∼ ||DR follows from Lemma
6.4. The estimates of (1) (respectively, (2); (3)) follow by weakening/simplifying the es-
timates of Lemma 6.4 (respectively, Lemma 6.2; Lemma 6.3, Theorem 5.8). For stronger
estimates, we refer to the various estimates of §5, 6. (Note that to simplify these estimates,
we make use of Chapter VII, Lemmas 3.5, 3.6.) The statement concerning the relationship
between the analytic torsion and the comparison theorem at finite primes follows from
Lemma 7.3 and the Remark following Lemma 7.3. The statement concerning invariance
with respect to GS1 follows from the definitions of the metrics using Lemma 7.2. ©

Remark. Note that the three models correspond roughly to three “domains of valid-
ity/applicability”:

Hermite Model (scaling factor = d
1
2 ) : nondegenerating E, fixed r < d

Legendre Model (scaling factor = d) : nondegenerating E, varying r < d

Binomial Model (scaling factor = 1) : degenerating E

Relative to Im(τ) (where E = Gm/qZ, q = exp(2πiτ)), the Hermite Model (respectively,
Legendre Model, Binomial Model) corresponds to the case where/is most useful when
Im(τ) is fixed (respectively, → 0; → ∞). Finally, as remarked at the end of §5, the factor
of n−1 appearing at the beginning of the last line of inequalities of Theorem 7.4, (3),
is the archimedean analogue of the description of the scheme-theoretic zero locus of the
determinant given in Chapter VI, Theorem 4.1, (2).
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Chapter IX:
The Arithmetic Kodaira-Spencer Morphism

§0. Introduction

In this Chapter, we apply the Hodge-Arakelov Comparison Theorem (Chapter VIII,
Theorem A) to construct an arithmetic version of the well-known Kodaira-Spencer mor-
phism of a family of elliptic curves E → S (satisfying a mild technical assumption con-
cerning its 2-torsion):

κarith
E : ΠS → Filt(HDR)(S)

Roughly speaking, this arithmetic Kodaira-Spencer morphism is a canonical map from the
algebraic fundamental group of SQ

def= S ⊗Z Q (i.e., if S = Spec(OK), where OK is the
ring of integers of a number field K, then one may think of ΠS as the absolute Galois
group of K) to a flag variety of filtrations of a module which is a certain analogue of the de
Rham cohomology of the elliptic curve. Moreover, this morphism has certain remarkable
integrality properties (in the Arakelov sense) at all the primes (both finite and infinite) of
a number field. This arithmetic Kodaira-Spencer morphism is constructed in §3 of this
Chapter. In §1,2, we first give a construction of the Kodaira-Spencer morphism in the
complex and p-adic cases which is entirely analogous to the construction to be given in the
arithmetic case in §3, but which shows quite explicitly how this construction is related (in
the complex and p-adic cases) to the “classical Kodaira-Spencer morphism” that appears
in the theory of moduli of algebraic varieties. Conceptually speaking, the main point in
all of these constructions consists, as depicted in the following diagram:

Kodaira-Spencer morphism:

motion in base-space �→ induced deformation of Hodge filtration

of the idea that the Kodaira-Spencer morphism is the map which associates to a “motion”
in the base-space of a family of elliptic curves, the deformation in the Hodge filtration of
the de Rham cohomology of the elliptic curve induced by the motion. More concretely, the
main idea consists of a certain “recipe” for constructing “Kodaira-Spencer-type morphisms”
out of “comparison isomorphisms between de Rham and étale/singular cohomology.” In
§3, we carry out this recipe in the case when the comparison isomorphism is the the
Hodge-Arakelov Comparison Isomorphism (Chapter VIII, Theorem A); in §1,2, we discuss
certain novel approaches to the well-known comparison isomorphisms for elliptic curves
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in the complex and p-adic cases, which, on the one hand, make the connection with the
classical Kodaira-Spencer morphism explicit, and, on the other hand, show how the Hodge-
Arakelov Comparison Isomorphism is entirely analogous to the well-known complex and
p-adic comparison isomorphisms.

§1. The Complex Case:
The Classical “Modular Theory” of the Upper Half-Plane

In this §, we review the de Rham isomorphism of a complex elliptic curve, showing
how this isomorphism may be regarded as being analogous in a fairly precise sense to the
Comparison Isomorphism of Chapter VIII, Theorem A. We then discuss the theory of the
Kodaira-Spencer morphism of a family of complex elliptic curves in the universal case, but
we formulate this theory in a somewhat novel fashion, showing how the Kodaira-Spencer
morphism may be derived directly from the de Rham isomorphism in a rather geometric
way. This formulation will allow us to make the connection with the global arithmetic
theory of §3.

We begin our discussion by considering a single elliptic curve E over C. Frequently in
the following discussion, we shall also write “E” for the complex manifold defined by the
original algebraic curve. Recall (cf. Chapter III, §3) that we have a commutative diagram

H1
DR(E,OE) = Ẽ† ∼= H1

sing(E,C) ⊇ H1
sing(E, 2πi ·R) ⊇ H1

sing(E, 2πi · Z)⏐⏐�exp

⏐⏐�exp

⏐⏐�exp

⏐⏐�exp

H1
DR(E,O×E ) = E† ∼= H1

sing(E,C×) ⊇ H1
sing(E,S1) = ER ⊇ identity elt.

Here, the horizontal isomorphisms are the de Rham isomorphisms relating de Rham coho-
mology to singular cohomology. Note that in characteristic zero, line bundles with connec-
tion are necessarily of degree zero, so E† may be naturally identified with H1

DR(E,O×E ),
the group of line bundles equipped with a connection on E. (Similarly, the (topological)
universal cover Ẽ† of E† may be identified with H1

DR(E,OE).) The vertical maps are the
morphisms induced on cohomology by the exponential map; S1 ⊆ C× is the unit circle
(equipped with its usual group structure). Finally, ER ⊆ E† is the real analytic submani-
fold (discussed in Chapter III, §3) which is equal to the closure of the torsion points of E†
and maps bijectively onto E via the natural projection E† → E.

Here, we would like to consider the issue of precisely how the de Rham isomorphisms
of the above diagram are defined. Of course, there are many possible definitions for these
isomorphisms, but the point that we would like to make here is the following:

If one thinks of H1
sing(E,S1) = ER (respectively, Tv(E) def= H1

sing(E, 2πi·
R)) as the “v-divisible group of torsion points of E” (respectively, the
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“v-adic Tate module”) — where v = ∞ is the archimedean prime of Q
— then, roughly speaking, one may think of the de Rham isomorphisms
as being given by the diagram

Hol. fns. on H1
DR(E,OE) = Ẽ† “ ∼= ” Real an. fns. on H1

sing(E, 2πi · R)⋃ ⋃
Hol. fns. on H1

DR(E,O×E ) = E† “ ∼= ” Real an. fns. on H1
sing(E,S1) = ER

where the horizontal isomorphisms “∼=” are given by restricting holo-
morphic functions on E†, Ẽ† to real analytic functions on the “∞-adic
torsion points/Tate module” ER, T∞(E) def= H1

sing(E, 2πi · R).

Here, we say “roughly speaking” (and write “∼=”) for the following reason: Although this
restriction morphism is injective, the correspondence between holomorphic functions on the
de Rham objects E†, Ẽ† and real analytic functions on the v-adic torsion point objects
ER, T∞(E) is, strictly speaking, only true on an “infinitesimal neighborhood” of ER ⊆ E†,
T∞(E) ⊆ Ẽ†. (That is to say, although a real analytic function on ER always corresponds
to a holomorphic function on some open neighborhood of ER in E†, whether or not this
holomorphic function extends to a holomorphic function defined over all of E† involves
subtle convergence issues and, in fact, is not always the case.) Thus, here, in order to get
a precise statement, we shall work with polynomial functions on Ẽ† and T∞(E). Then one
sees immediately that the de Rham isomorphism of the first commutative diagram of this
§ may be formulated as the isomorphism

HolomPoly(Ẽ†) ∼= Real AnPoly(T∞(E))

given by restricting holomorphic polynomials on Ẽ† to the ∞-adic torsion points so as to
obtain real analytic polynomials on T∞(E). When formulated from this point of view, one
sees that the Comparison Isomorphism of Chapter VIII, Theorem A, is analogous in a
very direct sense to the classical de Rham isomorphism in the complex case, i.e.:

Both may be thought of as being bijections between algebraic/ holomor-
phic functions on de Rham-type objects and arbitrary/ real analytic func-
tions on torsion points – bijections given by restricting algebraic/ holo-
morphic functions on de Rham-type objects to the torsion points lying
inside those de Rham-type objects.

This observation may be thought of as the philosophical starting point of the theory of
this paper.
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Remark. Note that the collection of “holomorphic functions on H1
DR(E,OE)” includes, in

particular, the theta functions (cf., e.g., [Mumf], Chapter I, §3) associated to the elliptic
curve E. Moreover, these functions are “fairly representative of” (roughly speaking, “gen-
erate”) the set of all holomorphic functions on H1

DR(E,OE) that arise by pull-back via the
projection H1

DR(E,OE) → H1(E,OE) (defined by the Hodge filtration) from holomorphic
functions on H1(E,OE). This observation played a fundamental motivating role in the
development of the theory of the present paper.

Next, we shift gears and discuss various versions of the Kodaira-Spencer morphism for
the universal family of complex elliptic curves. First, let us write H

def= {z ∈ C | Im(z) > 0}
for the upper half-plane, and

EH → H

for the universal family of complex elliptic curves over H. That is to say, over a point
z ∈ H, the fiber Ez of this family is given by Ez = C/ < 1, z > (where < 1, z > denotes
the Z-submodule generated by 1, z).

Let us fix a “base-point” z0 ∈ H. Write

H1
DR(Ez0)

def= H1
DR(Ez0 ,OEz0

)

Thus, H1
DR(Ez0) is a two-dimensional complex vector space. Recall that, in fact, the

correspondence z �→ H1
DR(Ez) defines a rank two vector bundle E on H equipped with

a natural (integrable) connection (the “Gauss-Manin connection”). Since the underlying
topological space of H is contractible, parallel transport via this connection thus gives rise
to a natural trivialization of this rank two vector bundle E , i.e., a natural isomorphism

E ∼= H × H1
DR(Ez0)

Recall that the Hodge filtration of de Rham cohomology defines a subbundle F 1(E) ⊆ E
of rank one. This subbundle induces a natural holomorphic morphism

κH : H → P
def= P1(H1

DR(Ez0))

that maps a point z ∈ H to the subspace of H1
DR(Ez0) = H1

DR(Ez) defined by F 1(E) ⊆ E
at z.

Now let us recall that we have a natural action of SL2(R) on H given by linear
fractional transformations. This action allows us to define a morphism

κSL2 : SL2(R) → P

340



by letting κSL2(γ) def= κH(γ · z0) (for γ ∈ SL2(R)). If we then differentiate κSL2 at z0, we
obtain a morphism on tangent spaces that fits into a commutative diagram:

sl2(R)
κsl2−→ τP,p0⏐⏐� #⏐⏐κτ

sl2(R)/so2
∼= τH,z0

Here, the vertical morphism on top is the derivative of κSL2 at the origin of SL2(R);
τP,p0 (respectively, τH,z0

) is the tangent space to P (respectively, H) at p0
def= κH(z0)

(respectively, z0). This vertical morphism clearly factors through the quotient sl2(R) →
sl2(R)/so2, where sl2(R) (respectively, so2) is the Lie algebra associated to SL2(R) (re-
spectively, the subgroup of SL2(R) that fixes z0). Moreover, all tangent vectors to z0 ∈ H
are obtained by acting by various elements of sl2(R) on H at z0; thus, one may identify
sl2(R)/so2 with τH,z0

(the vertical isomorphism on the bottom).

Definition 1.1. We shall refer to κSL2 (respectively, κsl2 ; κτ ) as the group-theoretic
(respectively, Lie-theoretic; classical) Kodaira-Spencer morphism (of the family EH → H
at z0).

Thus, the “classical Kodaira-Spencer morphism” κτ is obtained (cf. the above commu-
tative diagram) simply by using the fact that κsl2 factors through the quotient sl2(R) →
sl2(R)/so2. One checks easily that this morphism is indeed the usual Kodaira-Spencer
morphism associated to the family EH → H. In particular, κτ is an isomorphism.

The reason that we feel that it is natural also to regard κSL2 and κsl2 as “Kodaira-
Spencer morphisms” is the following: The essence of the notion of a “Kodaira-Spencer
morphism” is that of a correspondence that associates to a motion in the base-space the
induced deformation of the Hodge filtration of the de Rham cohomology, i.e., symbolically,

Kodaira-Spencer morphism:

motion in base-space �→ induced deformation of Hodge filtration

In the case of the “group-theoretic Kodaira-Spencer morphism” (respectively, “Lie-theoretic
Kodaira-Spencer morphism”; “classical Kodaira-Spencer morphism”), this motion is a mo-
tion given by the “Lie group SL2(R) of motions of H” (respectively, the Lie algebra asso-
ciated to this Lie group of motions; a tangent vector in H). That is to say, all three types
of Kodaira-Spencer morphism discussed here fit into the general pattern just described.

It turns out that the group-theoretic Kodaira-Spencer morphism is the version which
is most suited to generalization to the arithmetic case (cf. the discussions of §2,3 below).

Finally, we make the connection between the theory of the Kodaira-Spencer morphism
just discussed and the function-theoretic approach to the de Rham isomorphism discussed
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at the beginning of this §. First of all, let us observe that the action of SL2(R) on H lifts
naturally to an action on E . Moreover, if one thinks of SL2(R) as the group of unimodular
(i.e., with determinant = 1) R-linear automorphisms of the two-dimensional R-vector
space T∞(Ez0), that is, if one makes the identification

SL2(R) = SL(T∞(Ez0))

then the action of SL2(R) on E ∼= H × H1
DR(Ez0) corresponds to the natural action of

SL(T∞(Ez0)) on H1
DR(Ez0) ∼= T∞(Ez0) ⊗R C (where the isomorphism here is the de

Rham isomorphism). It thus follows that the group-theoretic Kodaira-Spencer morphism
κSL2 may also be defined as the morphism

SL2(R) = SL(T∞(Ez0)) → P = P(H1
DR(Ez0))

given by γ �→ γ · p0, where the expression “γ · p0” is relative to the natural action of
SL(T∞(Ez0)) on P = P(H1

DR(Ez0)) ∼= P(T∞(Ez0) ⊗R C) (where the isomorphism here
is that derived from the de Rham isomorphism). This approach to defining κSL2 shows
that:

The group-theoretic Kodaira-Spencer morphism κSL2 may essentially be
defined directly from the de Rham isomorphism.

This observation brings us one step closer to the discussion of the arithmetic case in
§3. In particular, in light of the above “function-theoretic approach to the de Rham
isomorphism,” it motivates the following point of view:

Note that (in the notation of the discussion at the beginning of this §) the space
HolomPoly(Ẽ†) of holomorphic polynomials on Ẽ† has a Hodge filtration

. . . F d(HolomPoly(Ẽ†)) ⊆ . . . ⊆ HolomPoly(Ẽ†)

given by letting F d(HolomPoly(Ẽ†)) ⊆ HolomPoly(Ẽ†) denote the subspace of polynomi-
als whose “torsorial degree” (cf. Chapter III, Definition 2.2), i.e., degree as a polyno-
mial in the relative variable of the torsor Ẽ† → Ẽ (where Ẽ is the universal covering
space of E), is < d. Note that relative to the “function-theoretic de Rham isomorphism”
HolomPoly(Ẽ†) ∼= Real AnPoly(T∞(E)), F d(HolomPoly(Ẽ†)) corresponds to the subspace
of Real AnPoly(T∞(E)) annihilated by ∂

d
. (Here, ∂ is the usual “del-bar” operator of

complex analysis on T∞(E) = ẼR, relative to the complex structure on ẼR defined by Ẽ.)
Let us write

Filt(HolomPoly(Ẽ†))
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for the (infinite-dimensional) flag-manifold of C-linear filtrations {F d}d∈Z≥0 of HolomPoly(Ẽ†)
such that F 0 = 0. Then the “Hodge filtration” just defined determines a point

pfunc
E ∈ Filt(HolomPoly(Ẽ†))

Similarly, any one-dimensional complex quotient Ẽ† → Q defines a filtration of HolomPoly(Ẽ†)
(given by looking at the degree with respect to the variable corresponding to the kernel of
Ẽ† → Q). In particular, we get an immersion

P(Ẽ†) ↪→ Filt(HolomPoly(Ẽ†))

Thus, returning to the discussion of the group-theoretic Kodaira-Spencer morphism,
we see that we may think of the composite

κfunc
SL2

: SL2(R) = SL(T∞(Ez0)) → Filt(HolomPoly(Ẽ†))

of κSL2 with the inclusion P(Ẽ†) ↪→ Filt(HolomPoly(Ẽ†)) as being defined as follows:

The natural action of SL(T∞(Ez0)) on Real AnPoly(T∞(Ez0)) induces,
via the “function-theoretic de Rham isomorphism”

Real AnPoly(T∞(Ez0)) ∼= HolomPoly(Ẽ†
z0

)

an action of SL(T∞(Ez0)) on HolomPoly(Ẽ†
z0); then the “function-theoretic

version of the group-theoretic Kodaira-Spencer morphism”

κfunc
SL2

: SL(T∞(Ez0)) → Filt(HolomPoly(Ẽ†
z0

))

is defined by γ �→ γ · pfunc
Ez0

, where pfunc
Ez0

∈ Filt(HolomPoly(Ẽ†
z0)) is the

natural point defined by the Hodge filtration on HolomPoly(Ẽ†
z0).

It is this point of view that forms the basis of our approach to the arithmetic case in §3.

Remark. The theory discussed in §1,2, of this Chapter generalizes immediately to the case
of higher-dimensional abelian varieties. Since, however, the Hodge-Arakelov Comparison
Theorem (Chapter VIII, Theorem A) is only available (at the time of writing) for elliptic
curves, we restrict ourselves both in the present and the following §’s to the case of elliptic
curves.
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§2. The p-adic Case:
The Hodge-Tate Decomposition as an Evaluation Map

The purpose of this § is to exhibit the morphism which defines the Hodge-Tate de-
composition of the p-adic Tate module of an elliptic curve as an evaluation map, given by
restricting certain functions on the universal extension of the elliptic curve to the p-power
torsion points of the elliptic curve. This renders explicit the analogy between the Hodge-
Arakelov Comparison Isomorphism of Chapter VIII, Theorem A, and the p-adic Hodge
theory of an elliptic curve. We then explain how, if one applies the general recipe – which
is the theme of the present Chapter – for obtaining Kodaira-Spencer-type morphisms from
evaluation map-based comparison isomorphisms (cf. §1 in the complex case and in §3 in
the global Arakelov case) to the present p-adic situation, one obtains a sort of “p-adic
arithmetic Kodaira-Spencer morphism,” which, by Faltings’ computation of certain Galois
cohomology groups, may be identified with the classical Kodaira-Spencer morphism of a
family of elliptic curves.

Remark. The material of the present § is in principle “well-known,” and, in fact, inspired
by the techniques and points of view of [Falt1,2], [Font], but I do not know of an adequate
explicit reference for this material. Roughly speaking, the idea here is what is usually
referred to as the p-adic period map for abelian varieties – cf. [Coln], [Colz], [Wint].
Indeed, our point of view here essentially coincides with what is done in [Coln], [Colz],
[Wint], and [Font], when restricted to the subspace of the de Rham cohomology of an elliptic
curve arising from differentials of the first kind (i.e., globally holomorphic differentials).
Our treatment of the “other half” of the de Rham cohomology, however, appears to differ
from these other sources. Indeed, Coleman ([Coln]) and Fontaine ([Font]) do not construct
a morphism on the entire de Rham cohomology module. On the other hand, Colmez
([Colz], Théorème 5.2) constructs such a morphism by thinking of the remainder of the de
Rham cohomology as being defined by differentials of the second kind (i.e., meromorphic
differentials which are “locally integrable”), which he integrates to construct his period
map; in particular, Colmez does not use the universal extension as we do here. Finally,
Wintenberger ([Wint], §4) uses the universal extension, but in a somewhat different fashion
from what is done here.

Let k be a perfect field of characteristic p > 2. (In fact, the case p = 2 may be
handled without much more difficulty, but for simplicity, we assume here that p > 2.)
Write A

def= W (k); K
def= A⊗Zp

Qp. Let S be a formal p-adic A-scheme, which is formally
smooth and formally of finite type over A. Suppose that S is equipped with an A-flat
divisor with normal crossings D ⊆ S. Write Slog for the resulting log scheme. Suppose
that

C log → Slog

is a log elliptic curve over Slog (cf. Chapter III, Definition 1.1).
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Next, let us suppose that S is affine, i.e., of the form

Spf(R)

where R is a p-adic ring, and small (cf. [Falt2], II., (a.)), i.e., R is étale over the p-adic
completion A[t1, . . . , tr]∧ of A[t1, . . . , tr], where t1, . . . , tr are indeterminates such that the
schematic zero locus of t

def= t1 · . . . · tr in S is equal to D. Write

R̂

for the p-adic completion of the normalization R of R in the maximal étale extension of
RQp

[t−1] (where RQp

def= R ⊗ Qp). (Here, “maximal” means “among those extensions
whose Spf is connected.”) Also, let us write

ΓR
def= Gal(RQp

/RQp
)

Then as in [Falt2], II., (b.), we may form the ring of p-adic periods

B+(R)

This ring admits a natural ΓR-action, together with a ΓR-equivariant projection B+(R) →
R̂ whose kernel I is a “principal divided power ideal.” In the discussion of the present §,
we will work with the following truncated version of B+(R):

B
def= B+(R)/I [2]

(where I [2] is the second divided power of I). Write J
def= I/I [2] ⊆ B for the image of I in

B. Thus, we have an exact sequence of ΓR-modules:

0 → J → B → R̂ → 0

Moreover, J is a free R̂-module of rank 1. If one further takes the ΓR-action on J into
account, then one has a natural identification (cf. [Falt2], II., (b.))

Zp(1) · R̂ = p
1

(p−1) · J

(where the “(1)” is a Tate twist). Put another way, there is a ΓR-equivariant homomor-
phism

βQp
: Qp(1) → B×
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whose projection to R̂
×

is the natural inclusion Qp(1)/Zp(1) ↪→ R̂
×

and whose restriction
to Zp(1) is equal to 1 plus the homomorphism β : Zp(1) → J .

Note that since R̂ contains all roots of the q-parameter at infinity, we may form

E∞ → Spf(R̂); C∞ → Spf(R̂)

as in Chapter IV, §4. Note that we have a projection C∞ → C, and an open immer-
sion E∞ ↪→ C∞. Thus, in particular, by pulling back via this projection and this open
immersion the extension to C (cf. Chapter III, Corollary 4.3)

E
†
C → C

of the universal extension E† → E of E, we obtain

E†
∞ → Spf(R̂); E

†
C∞ → Spf(R̂)

Next, let us recall that the universal extension E
†
∞ defines a crystal E

†
∞,crys (cf., e.g.,

[Mess], for the non-logarithmic case) over Spf(R̂)log (where “log” refers to the natural log
structure defined by roots of the q-parameter at infinity). Since we may regard Spf(B) as

a PD-thickening of Spf(R̂)log, we thus see that it makes sense to speak of E
†
∞,crys(B), or

even

E†
∞,crys(BQp

)

where BQp

def= B ⊗ Qp. In particular, we see that, for n ≥ 0,

pnE†
∞,crys(BQp

) ⊆ E†
∞,crys(BQp

)

forms a group (noncanonically isomorphic to) (Z/pn · Z)2. In fact, the sections of the

crystal E
†
∞,crys defined by pnE

†
∞,crys(BQp

) are all horizontal, hence preserved by base-

changes of E
†
∞,crys among various thickenings of BQp

. Observe also that as n → ∞,

the pnE
†
∞,crys(BQp

) form a natural inverse system (all of whose transition morphisms are
surjective); the inverse limit of this inverse system is the Tate module

TE

of E. Note that as a topological group, TE
∼= Zp

2. Moreover, TE has a natural structure of

continuous ΓR-module, and TE⊗Z/pn · Z may be naturally identified with pnE
†
∞,crys(BQp

).
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Next, we would like to consider functions. Let us write

R
E
†
∞

for the push-forward to E∞ of the structure sheaf O
E
†
∞

on E
†
∞. Recall that this structure

sheaf has a filtration F j(R
E
†
∞

) ⊆ R
E
†
∞

(for j ∈ Z), where we take F j(R
E
†
∞

) to be the

subsheaf of sections of torsorial degree (cf. Chapter III, Definition 2.2) ≤ −j. Note that
the filtration index that we use here differs from the filtration index of Chapters III-VIII in
that “the index used here = 1− the index used there.” In particular, F j(R

E
†
∞

) as defined

here is a vector bundle on E∞ of rank 1−j, when j ≤ 0. Thus, we have an exact sequence:

0 −→ OE∞ −→ F−1(R
E
†
∞

R̂

) −→ τE ⊗OS
O

E
†
∞

−→ 0

In particular, if we apply this filtration to the crystal E
†
∞,crys evaluated on the thickening

B, where we regard B itself as equipped with the filtration given by:

F≥2(B) = 0; F 1(B) = J ; F≤0(B) = B

then we see that the sheaf R
E
†
∞,crys(B)

of functions on E
†
∞,crys(B) (pushed forward topo-

logically to E∞) gets a filtration whose F 0(−) we denote by

R0

If one restricts functions on E
†
∞,crys(B) to E

†
∞,crys(R̂) = E

†
∞(R̂), then one obtains a

surjection R0 → OE∞ which fits into an exact sequence

0 −→ J ⊗
R̂

F−1(R
E
†
∞

) −→ R0 −→ OE∞ −→ 0

Let us write

RJ def= R0/J · OE∞

Thus, we have an exact sequence

0 −→ (J ⊗R τE) ⊗
R̂
OE∞ −→ RJ −→ OE∞ −→ 0
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The evaluation map that we will consider in this § (which gives rise to the comparison
isomorphism of Hodge-Tate theory) will be defined by restricting functions in R0 to the

p-power torsion points pnE
†
∞,crys(BQp

) (and then noting that this restriction map factors
through RJ).

More precisely, since sections of R0 are functions on E
†
∞,crys(B), hence define func-

tions on E
†
∞,crys(BQp

), we may restrict them to the points of pnE
†
∞,crys(BQp

) to obtain a
morphism

ΞQp
[pn] : R0 → Func(pnE†

∞,crys(BQp
), BQp

) def=
⊕

γ∈pnE
†
∞,crys(BQp )

BQp

Now we have the following:

Lemma 2.1. The morphism ΞQp
[pn] reduced modulo JQp

⊆ BQp
maps into R̂ ⊆ R̂Qp

.

Proof. Indeed, this follows from the definition of R0, together with the fact that the image

of pnE
†
∞,crys(R̂Qp

) in E∞(R̂Qp
) maps into E∞(R̂) ⊆ E∞(R̂Qp

) (i.e., all the p-torsion points

of E∞ over R̂Qp
are already defined over R̂). ©

Thus, it follows that ΞQp
[pn] maps J ·O(E∞)

R̂

⊆ R0 into Func(pnE
†
∞,crys(BQp

), J) ⊆

Func(pnE
†
∞,crys(BQp

), BQp
). In particular, if we compose ΞQp

[pn] with the projection

Func(pnE†
∞,crys(BQp

), BQp
) → Func(pnE†

∞,crys(BQp
), BQp/Zp

)

(where BQp/Zp

def= B ⊗Qp/Zp) we get a morphism R0 → Func(pnE
†
∞,crys(BQp

), BQp/Zp
)

which vanishes on the kernel of R0 → RJ and maps into Func(pnE
†
∞,crys(BQp

), JQp/Zp
),

i.e., a morphism

ΞRJ [pn] : RJ → Func(TE ⊗ Z/pn · Z, JQp/Zp
)

(since TE ⊗ Z/pn · Z = pnE
†
∞,crys(BQp

)).

Let us analyze this morphism ΞRJ [pn] in more detail. First, let us observe from
the definitions that R0 has a natural ring structure (inherited from the ring structure
of O

E
†
∞,crys

). Moreover, it follows immediately from the definitions that the evaluation

map ΞQp
[pn] is a ring homomorphism. Note also that Func(TE ⊗Z/pn · Z, JQp/Zp

) has a
natural R0-module structure defined by ΞQp

[pn].
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Lemma 2.2. The restriction R0 → Func(TE ⊗ Z/pn · Z, JQp/Zp
) of ΞRJ [pn] to R0 is

a derivation.

Proof. Suppose that f, g are local sections of R0. Write:

(ΞQp
[pn])(f) = α0 + αJ ; (ΞQp

[pn])(g) = β0 + βJ

where α0, β0 ∈ B, and αJ , βJ ∈ JQp
. (Note that the fact that such α0, β0, αJ , βJ exist

follows from Lemma 2.1.) Then since ΞQp
[pn] is a ring homomorphism, we obtain that:

(ΞQp
[pn])(fg) = (ΞQp

[pn])(f) · (ΞQp
[pn])(g)

= (α0 + αJ ) · (β0 + βJ)
= α0 · βJ + β0 · αJ + α0 · β0

But α0 · β0 ∈ B, so modulo B, we obtain:

(ΞQp
[pn])(fg) ≡ α0 · βJ + β0 · αJ

≡ f · (ΞQp
[pn])(g) + g · (ΞQp

[pn])(f)

This completes the proof. ©

Next, let us observe that the crystal E
†
∞,crys gives rise to a crystal Ω

E
†
∞,crys

(the sheaf

of differentials of E
†
∞,crys over the base, i.e., thickening of R̂, in question) of modules over

R
E
†
∞,crys

(where R
E
†
∞,crys

is the topological push-forward to E∞ of the structure sheaf of

E
†
∞,crys). Let us denote by

Ωinv

E
†
∞,crys

⊆ Ω
E
†
∞,crys

the subsheaf of invariant differentials (cf. the discussion at the beginning of the Appendix).

Thus, Ωinv

E
†
∞,crys

forms a crystal in (rank two) vector bundles over Spf(R̂), and we have an

isomorphism of crystals:

Ωinv

E
†
∞,crys

⊗R
E
†
∞,crys

∼= Ω
E
†
∞,crys

(where the tensor product is over the base, i.e., thickening of R̂, in question). Note that

Ωinv

E
†
∞

(i.e., Ωinv

E
†
∞,crys

evaluated on Spf(R̂)) admits a natural two-step Hodge filtration, whose
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F 0 = Ωinv

E
†
∞

; F 2 = 0; and F 1 consists of the invariant differentials ωE on E∞. (Thus, F 0/F 1

may be identified with τE .) Tensoring this filtration with the filtration discussed above on
R

E
†
∞

gives rise to a filtration on Ω
E
†
∞

. Moreover, these filtrations define filtrations on the

evaluations (on various thickenings of Spf(R̂)) of the corresponding crystals. Thus, if we
evaluate these crystals on Spf(B), we obtain:

F 1(Ωinv

E
†
∞,crys

)|Spf(B) ⊆ F 1(Ω
E
†
∞,crys

)|Spf(B) ⊆ Ω
E
†
∞,crys

|Spf(B)

Note that we have a natural inclusion

F 1(Ωinv

E
†
∞

) ⊗
R̂

Ker(R0 → OE∞)) ↪→ F 1(Ω
E
†
∞,crys

|Spf(B))

Let us write

ΩJ

E
†
∞

def= F 1(Ω
E
†
∞
|Spf(B))/(F 1(Ωinv

E
†
∞

) ⊗
R̂

Ker(R0 → OE∞))

ΩInv,J

E
†
∞

def= (F 1/F 2)(Ωinv

E
†
∞

)|Spf(B)

Thus, we have a commutative diagram of R̂-modules:

0 −→ J ⊗R τE −→ ΩInv,J

E
†
∞

−→ ωE ⊗R R̂ −→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −→ (J ⊗R τE) ⊗

R̂
OE∞ −→ ΩJ

E
†
∞

−→ Ω
E∞/R̂

= ωE ⊗R OE∞ −→ 0

In particular, we see that we obtain a natural isomorphism

ΩInv,J

E
†
∞

⊗
R̂
OE∞

∼= ΩJ

E
†
∞

On the other hand, it follows immediately from the definitions of the various filtrations
that the exterior derivative d (over B) on R

E
†
∞,crys

|Spf(B) induces a morphism R0 →

F 1(Ω
E
†
∞
|Spf(B)), hence (by projecting) a morphism

R0 → ΩJ

E
†
∞
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which is easily seen to vanish on J · O(E∞)
R̂

. Thus, we obtain that the exterior derivative

induces a derivation

RJ → ΩJ

E
†
∞

from the ring RJ to the module ΩJ

E
†
∞

, hence a natural morphism

Ω
RJ/R̂

→ ΩJ

E
†
∞

But one computes easily (using the exact sequence considered above in which RJ appears
as the term in the middle) that this morphism is an isomorphism (where we use that
p �= 2!), i.e., we have proven the following

Lemma 2.3. We have: Ω
RJ/R̂

∼= ΩJ

E
†
∞

.

Thus, the well-known relation between derivations and differentials implies (by Lem-
mas 2.2, 2.3) that ΞRJ [pn] factors as the composite of the tautological derivation

dRJ : RJ → Ω
RJ/R̂

∼= ΩJ

E
†
∞

and a morphism

ΩJ

E
†
∞

→ Func(TE ⊗ Z/pn · Z, JQp/Zp
)

If we then restrict to the invariant differentials ΩInv,J

E
†
∞

⊆ ΩJ

E
†
∞

, we get a morphism

Ψ[pn] : ΩInv,J

E
†
∞

→ Func(TE ⊗ Z/pn · Z, JQp/Zp
)

Lemma 2.4. The image of Ψ[pn] lies in the subset

Hom(TE ⊗ Z/pn · Z, JQp/Zp
) ⊆ Func(TE ⊗ Z/pn · Z, JQp/Zp

)

of “functions that are compatible with the additive group operations on TE ⊗Z/pn · Z and
JQp/Zp

.”

Proof. Indeed, this follows by observing that since the definition of Ψ[pn] is “natural,”
it is functorial with respect to the homomorphism μ : E∞ ×

R̂
E∞ → E∞ (defined by the
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group law on the group scheme E∞). On the other hand, (by the functoriality of invariant
differentials with respect to homomorphisms) the pull-back to E∞×

R̂
E∞ of any section α

of ΩInv,J

E
†
∞

is simply (α,α). Put another way, this implies that to evaluate (Ψ[pn])(α) on the

sum of two elements of TE ⊗ Z/pn · Z is the same as the sum of the values of (Ψ[pn])(α)
at each of these two elements, i.e., the function (Ψ[pn])(α) ∈ Func(TE ⊗Z/pn · Z, JQp/Zp

)
is additive, as desired. ©

Note that the additivity property of Lemma 2.4 implies that: (i) the image of Ψ[pn] is
annihilated by pn; (ii) for α ∈ ΩInv,J

E
†
∞

, the function (Ψ[pn−1])(α) is the function induced by

(p · Ψ[pn])(α) on the quotient TE ⊗ Z/pn · Z → TE ⊗ Z/pn−1 · Z. In particular, by taking
the inverse limit, we obtain a morphism:

ΨZp
: ΩInv,J

E
†
∞

→ Hom(TE , J)

This morphism is the morphism that defines the Hodge-Tate decomposition (cf., e.g., the
final Theorem – i.e., the “relative version” – in [Hyodo], §0.3). The following result may
be regarded as the main theorem of the Hodge-Tate theory of an elliptic curve:

Theorem 2.5. The morphism

ΨZp
: ΩInv,J

E
†
∞

→ Hom(TE , J)

is invertible over Qp, and its inverse has poles annihilated by p
1

(p−1) .

Proof. Note that ΨZp
is an R̂-linear morphism between free R̂-modules of rank 2. More-

over, its determinant may be regarded as a morphism

det(ΨZp
) : J → det(TE)∨ ⊗Zp

J⊗2 = J⊗2(−1)

i.e., this determinant may be thought of as an element

D ∈ Hom
R̂
(J, J⊗2(−1)) = J(−1) = HomZp

(Zp(1), J)

I claim that (up to a sign) this element is the morphism β : Zp(1) → J discussed at the
beginning of this §. (Note that this is sufficient to complete the proof of Theorem 2.5.)

In order to prove this claim, let us first observe that it suffices to prove it when the
present S is replaced by the (formal scheme given by the) completion of S along D. Indeed,
this is clear when this completion along the divisor at infinity D is “schematically dense”
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in S (i.e., the map from functions on S to functions on this completion is injective).
But this holds in the “universal case,” i.e., when the original S is étale over (the p-
adic completion of) the moduli stack (M1,0)Zp

. Thus, it suffices to work in a formal
neighborhood of infinity. In particular, for the rest of the proof, we assume that S is such
a formal neighborhood.

Then, by Chapter III, Theorem 2.1, we have an exact sequence of group objects

0 → (Gm)S → E†
∞ → WE → 0

over S. (Here, WE is the affine group object associated to ωE .) Let us observe that,

relative to the structure of E
†
∞ as a crystal over Spf(R̂), this exact sequence is horizontal.

Indeed, the subobject (Gm)S ⊆ E
†
∞ may be recovered as the (formal) schematic closure

of the prime-to-p torsion points of E
†
∞ that lie inside (Gm)S . But it is clear that the

subschemes defined by these torsion points are horizontal. Thus, we see that this exact
sequence is horizontal, as desired.

Next, observe that, since we are working in a formal neighborhood of infinity, the
ΓR-module fits into a natural exact sequence of ΓR-modules:

0 → Z/pn · Z(1) → TE ⊗ Z/pn · Z → Z/pn · Z → 0

Moreover, if we consider the affine coordinate “T” on WE corresponding to the trivializa-
tion of ωE given by “d log(U)” (notation of Chapter III, §5), then it follows from Chapter
III, Corollary 5.9, that the image under ΞRJ [pn] of the section of RJ defined by “T · j”
(where j ∈ J) is the function on TE⊗Z/pn · Z that arises by pulling back (to TE⊗Z/pn · Z)
the J-valued function on Z/pn · Z that maps b ∈ Z/pn · Z to b · j. Thus, in particular,
applying Hom(−, J) to the inverse limit as n → ∞ of the above exact sequence — which
yields an exact sequence

0 → J → Hom(TE , J) → J(−1) → 0

— we see that ΨZp
maps T ·J ⊆ ΩInv,J

E
†
∞

to J ⊆ Hom(TE , J) isomorphically via the morphism

given by T �→ 1.

Thus, it remains to consider what happens when functions on (Gm)S are restricted to
Z/pn · Z(1) ⊆ TE ⊗ Z/pn · Z. In particular, we would like to investigate the image of the
invariant differential d log(U) under Ψ[pn]. But since Ψ[pn] was defined by factoring the
derivation ΞRJ [pn] (cf. Lemma 2.2) through the tautological derivation, it follows that this
amounts to investigating the behavior of the function “log(U)” on Z/pn · Z(1) ⊆ (Gm)S .
But then it follows from the definition of the morphism β : Zp(1) → J (which is essentially
given by taking the logarithm of p-power roots of unity! — cf. [Falt2], II., (b.)) that (up to
a sign), if we take the inverse limit as n → ∞, the image of d log(U) ∈ ωE ⊆ Ωinv

E
†
∞

/(J⊗RτE)
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under the composite of ΨZp
with the quotient Hom(TE , J) → J(−1) is precisely β ∈

Hom(Zp(1), J) = J(−1). More explicitly, let ζ ∈ R̂ be a pn-th root of unity. Write

ζ̃ ∈ p−n · Zp(1) ⊆ Qp(1) for an element such that z
def= βQp

(ζ̃) ≡ ζ modulo J . Note that

z ∈ B itself is not necessarily a pn-th root of unity. If δ
def= −p−n ·ζ ·β(pn ·ζ̃) ∈ p−n ·J ⊆ JQp

,
then

(z + δ)pn

= zpn

+ pn · zpn−1 · δ = 1 + β(pn · ζ̃) + pn · ζ−1 · δ = 1

i.e., z + δ ∈ μpn(B). Thus, the evaluation map “modulo B” (cf. the definition of ΞRJ [pn]
above) maps the function U on (Gm)S to the image of z + δ in BQp/Zp

. In fact, this
image is equal to the image δ ∈ JQp/Zp

of δ. Put another way, we obtain that dU �→ δ, so
d log(U) = U−1 · dU �→ ζ−1 · δ = −p−n · β(pn · ζ̃) (mod J) ∈ JQp/Zp

. Taking the inverse
limit as n → ∞, we thus obtain that, in this inverse limit, d log(U) �→ −β, as desired.
Thus, combining this with what was done in the preceding paragraph, we see that the
determinant D in question is equal to ±β, as claimed. ©

Remark. The isomorphism of Theorem 2.5 is the Hodge-Tate Comparison Isomorphism of
an elliptic curve. If one restricts it to a point α of S valued in some finite extension L of K,
then it follows from the facts H1(ΓL, L̂(1)) = 0, H0(ΓL, L̂) = L (where ΓL

def= Gal(L/L))
that Ωinv

E
†
∞
|α admits a unique ΓL-invariant splitting

Ωinv

E
†
∞
|α = ωE |α ⊕ τE(1)|α

(where we use that JQp
= R̂Qp

(1)), hence that Theorem 2.5 gives us an isomorphism

ωE |α ⊕ τE(1)|α ∼= TE ⊗Zp
L̂

This is the usual form in which the Hodge-Tate “comparison isomorphism”/decomposition
is stated.

The important point here is that this well-known isomorphism is essentially defined
by restricting functions on the universal extension of E to p-power torsion points (cf. the
definition of ΞQp

[pn]), i.e.,

The Hodge-Tate Comparison Isomorphism is defined in a fashion which
is entirely analogous to the definition of the Hodge-Arakelov Comparison
Isomorphism (Chapter VIII, Theorem A).

Note, moreover, that after reducing ΞQp
[pn] “modulo Zp,” and factoring through the

tautological derivation dRJ , we restricted to the invariant differentials on the universal

354



extension. Thus, put another way, the comparison isomorphism of Theorem 2.5 was defined
essentially by integrating invariant differentials, and then restricting the resulting functions
to p-power torsion points. (Thus, these “resulting functions” are essentially “logarithm”
type functions, of the sort reviewed in the Appendix.) Regarded from this point of view,
we thus also see the explicit analogy between this p-adic comparison isomorphism and its
complex counterpart in §1.

Finally, we make the connection between the above discussion of the Hodge-Tate Com-
parison Isomorphism and the arithmetic Kodaira-Spencer morphism. In keeping with the
analogy to the theory of §1,3, we start off with the comparison isomorphism (Theorem
2.5):

ΨQp
: E def= (ΩInv,J

E
†
∞

)Qp
∼= Hom(TE , JQp

) = V ∨E (1) ⊗Qp
R̂Qp

∼= VE ⊗Qp
R̂Qp

(where ΨQp

def= ΨZp
⊗ Qp, VE

def= TE ⊗ Qp). Since VE ⊗Qp
R̂Qp

has a natural ΓR-action,
we thus obtain a natural ΓR-action on E . This technique of obtaining a Galois action
on the de Rham side of the comparison isomorphism by pulling back (via the comparison
isomorphism) the natural Galois action on the étale side is entirely analogous to what is
done in §1,3.

Thus, we have a natural ΓR-action on E . Note, moreover, that we have an exact
sequence of R̂Qp

-modules:

0 → τE(1) ⊗R R̂Qp
→ E → ωE ⊗R R̂Qp

→ 0

(where we identify JQp
with R̂Qp

(1) via β). Moreover, it is easy to see from the definition

of ΞRJ [pn] that the natural Galois action on τE(1) ⊗R R̂Qp
⊆ E is compatible with the

Galois action on VE ⊗Qp
R̂Qp

. Thus, this submodule is stabilized by ΓR, and the above
exact sequence is an exact sequence of ΓR-modules. (Note that the fact that the Galois

action on ωE ⊗R R̂ arising from the Galois action on E is the expected action may be
derived using determinants, as in the proof of Theorem 2.5.) We observe that this exact
sequence is essentially the same as that of [Mzk3], Proposition 2.4.

This exact sequence thus defines a cohomology class

ηKS ∈ H1(ΓR,Hom
R̂Qp

(ωE ⊗R R̂Qp
, τE(1) ⊗R R̂Qp

)) = H1(ΓR, τ⊗2
E (1) ⊗R R̂Qp

)

Such a cohomology class may be thought of as an equivalence class of twisted homomor-
phisms ΓR → τ⊗2

E (1)
R̂Qp

def= τ⊗2
E (1) ⊗R R̂Qp

, where we consider twisted homomorphisms
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that differ by (the twisted homomorphism defined by) a coboundary to be equivalent. We
would like to regard this equivalence class of twisted homomorphisms which, by abuse of
notation, we write

κarith,p
R : ΓR → τ⊗2

E (1)
R̂Qp

as a sort of p-adic (Galois) group-theoretic/arithmetic Kodaira-Spencer morphism, anal-
ogous to the morphisms “κfunc

SL2
” of §1, and “κarith

E ” in §3. Note that the construction of
κarith,p

R starting from the comparison isomorphism is entirely analogous to what is done in
§1,3.

To explain why it is natural to regard κarith,p
R as a sort of Kodaira-Spencer morphism,

we must recall the theory of [Falt1]. In [Falt1], I., §4, (b), (f), a certain natural extension
of ΓR-modules

0 → p−
1

(p−1) · R̂ → Eρ → Ωlog
S (−1) ⊗R R̂ → 0

(where Ωlog
S

def= ΩSlog/A) is constructed. If we write Θlog
S

def= (Ωlog
S )∨ for the logarithmic

tangent bundle of Slog over A, then we get an element

ηFalt ∈ H1(ΓR,Θlog
S (1) ⊗R R̂Qp

)

This element may be thought of as a twisted homomorphism

ξFalt
R : ΓR → Θlog

S (1)
R̂Qp

On the other hand, we have the classical Kodaira-Spencer morphism

κclass
R : Θlog

S → τ⊗2
E

given by observing the extent to which the Hodge filtration of the crystal Ω
E
†
∞

varies as

one moves in various tangent directions ∈ Θlog
S . Then the relationship between the p-adic

arithmetic Kodaira-Spencer morphism κarith,p
R and the classical Kodaira-Spencer morphism

κclass
R is given by Faltings’ morphism ξFalt

R , as described in Theorem 2.6 below.

Remark. If we write

ΔR
def= Ker(ΓR → ΓK

def= Gal(K/K))
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for the geometric portion of the Galois group ΓR, then according to the theory of “almost
étale extensions” discussed in [Falt1], “ΔR ⊗Zp

R̂Qp
” (notation, which, of course, is not

defined rigorously, but is meant to be suggestive of what is going on) may roughly be

identified with Θlog
S (1) ⊗R R̂Qp

, that is to say, over R̂Qp
, the geometric Galois group ΔR

of Slog is “almost equivalent” to the tangent bundle of Slog, hence may be thought of as
a group of “motions in Slog.” From this “almost” point of view, it is thus natural that
the domain of our p-adic arithmetic Kodaira-Spencer morphism κarith,p

R is the Galois group
ΓR.

Theorem 2.6. We have a commutative diagram:

ΓR
−ξFalt

R−→ Θlog
S (1)

R̂Qp⏐⏐�id

⏐⏐�κclass
R (1)

R̂Qp

ΓR

κarith,p
R−→ τ⊗2

E (1)
R̂Qp

i.e., in terms of cohomology classes, the change of coefficients morphism

H1(ΓR,Θlog
S (1) ⊗R R̂Qp

) → H1(ΓR, τ⊗2
E (1) ⊗R R̂Qp

)

defined by κclass
R maps −ηFalt �→ ηKS.

Proof. First of all, since both ηFalt and ηKS are clearly functorial in R, it suffices to prove
the result in the universal case, i.e., the case where S is (formally) étale over the p-adic
completion of the moduli stack (M1,0)Zp

. Thus, for the rest of the proof, we assume that
we are dealing with such an S.

Let us write

ΔR
def= Ker(ΓR → ΓK

def= Gal(K/K))

Then observe that by the theory of [Falt1] (cf. especially [Falt1], p. 270, Theorem 4.4,

(i)), it follows that H0(ΓK ,H1(ΔR, τ⊗2
E (1)⊗R R̂Qp

)) is a free RQp
-module of rank 1, while

H1(ΓK ,H0(ΔR, τ⊗2
E (1) ⊗R R̂Qp

)) = 0 (cf. the well-known fact that H1(ΓK ,K(1)) = 0;
[Mzk3], Lemma 2.2). Thus, by the Leray-Serre spectral sequence, we obtain that

H1(ΓR, τ⊗2
E (1) ⊗R R̂Qp

) ↪→ H0(ΓK ,H1(ΔR, τ⊗2
E (1) ⊗R R̂Qp

)) (∼= RQp
)

i.e., that two classes in H1(ΓR, τ⊗2
E (1) ⊗R R̂Qp

) coincide if and only if they coincide after
restriction to a formal neighborhood of the divisor at infinity D (cf. the proof of The-
orem 2.5). Thus, it suffices to prove the result in the case where S is a such a formal
neighborhood.
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In this case, however, it follows from the construction of the extension “Eρ” in [Falt1],
I., §4, that ηFalt is essentially given by the image of the class ∈ H1(ΓR,Zp(1)) obtained by
extracting p-power roots of the q-parameter under the change of coefficients morphism

H1(ΓR,Zp(1)) → H1(ΓR,Θlog
S (1) ⊗R R̂Qp

)

defined by the “tangent vector” ∂/∂log(q). On the other hand, it follows from the discus-
sion in the proof of Theorem 2.5 that the extension ηKS is simply the extension class of
the exact sequence

0 → Zp(1) → TE → Zp → 0

pushed forward by the change of coefficients morphism

H1(ΓR,Zp(1)) → H1(ΓR, τ⊗2
E (1) ⊗R R̂Qp

)

defined by (∂/∂U)⊗2 (notation of the proof of Theorem 2.5). On the other hand, since it
is well-known that the classical Kodaira-Spencer morphism maps ∂/∂log(q) �→ −(∂/∂U)⊗2

(cf., e.g., [FC], p. 84, the second paragraph preceding Lemma 9.3, beginning “As an
example...”), it thus follows that −ηFalt �→ ηKS, as desired. ©

Remark. Put another way, the message of the proof of Theorem 2.6, and indeed of this
entire §, is that:

The relationship between the p-adic Galois-theoretic/arithmetic Kodaira-
Spencer morphism and the classical Kodaira-Spencer morphism is the
essential content of Serre-Tate theory.

For more on this point of view in the case of abelian varieties, we refer to [Katz]. For
more on this point of view in a more general context (in particular, the case of hyperbolic
curves), we refer to [Mzk1], Introduction; Chapter V, §1; as well as to [Mzk2], Introduction,
especially §2.3.

358



§3. The Global Arithmetic Case:
Application of the Hodge-Arakelov Comparison Isomorphism

In this §, we apply the Hodge-Arakelov Comparison Isomorphism (cf. Chapter VIII,
Theorem A) to construct a global arithmetic analogue of the Kodaira-Spencer morphism
of a family of elliptic curves. The technique of construction is motivated by the point of
view discussed in §1,2, in the complex and p-adic cases.

We begin by discussing the behavior of the trivializations arising from theta groups at
archimedean primes. Thus, let E be an elliptic curve over C. Fix a positive integer d, and
write

L def= OE(d · [e])

Let | ∼ |L be a metric on L whose curvature is translation-invariant. Recall from Chapter
IV, §1, the subscheme of symmetric elements

SL ⊆ GL

of the theta group GL of L.

Lemma 3.1. The automorphisms of (E,L) defined by points of SL preserve | ∼ |L.

Proof. Indeed, clearly any translation of a translation-invariant (1, 1)-form is again
translation-invariant. Thus, it follows that for γ = (α, ι) ∈ SL, the metric γ(| ∼ |L)
that one obtains on L by first pulling back | ∼ |L via ι : T ∗α L ∼= L, and then applying
(T −1

α )∗ to produce (by transport of structure) a metric on L has translation-invariant cur-
vature. Thus, the metrics γ(| ∼ |L) and | ∼ |L both have translation-invariant curvature,
hence differ by a positive constant λγ . Moreover, since γ ∈ SL implies γN ∈ SL (∀ N ∈ Z),
it follows that the correspondence γ �→ λγ defines a homomorphism from < γ > (the sub-
group of GL generated by γ, which lies inside SL) to R>0 (equipped with its multiplicative
group structure). Since < γ > is a finite group, it thus follows that this homomorphism is
trivial, so λγ = 1, as desired. ©

Now recall the “theta trivialization”

Θα : L|T ∗α KL
∼= (L|α0) ⊗OKL0 OKL

(where α ∈ KL) of the discussion following Chapter IV, Theorem 1.6. Note that both
sides of this isomorphism may be regarded as finite-dimensional complex vector spaces.
Moreover, both of these vector spaces have natural metrics, arising from | ∼ |L, and the
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fact that since we are working over C, the ring OKL may be regarded as the ring of
C-valued functions on the d-torsion points dE of E, hence admits a natural L2-metric

||f ||2 def=
1
d2

·
∑

τ∈dE

|f(τ)|2

(for f ∈ OKL). Since this trivialization is defined by the splitting σ : 2 · KL → GL of
GL → KL discussed in Chapter IV, Theorem 1.6, which factors through SL, it follows from
Lemma 3.1 that:

Lemma 3.2. If one equips both sides of the theta trivialization

Θα : L|T ∗α KL
∼= (L|α0) ⊗OKL0 OKL

determined by the splitting σ of Chapter IV, Theorem 1.6, with their natural metrics (aris-
ing from | ∼ |L, and the L2-metric on OKL), then this trivialization Θ is an isometry.

Remark. In particular, we may conclude the following: Recall the Comparison Isomor-
phism (cf. Chapter V, Theorem 3.1, (2); or, alternatively, Chapter VIII, Theorem A,
(2))

Ξ : Γ(E†
[d],Lη)<d ∼= Lη|dE

where Lη
def= T ∗η L, and η ∈ E is a torsion point of order m not dividing d. Thus, if we

compose this isomorphism with the trivialization

Θη : L|T ∗η KL = Lη|dE
∼= (L|η0) ⊗OKL0 OKL

we get an isomorphism

Ψ : Γ(E†
[d], T ∗η L)<d ∼= (L|η0) ⊗OKL0 OKL

of d-dimensional vector spaces over C. Next, suppose that we are given an automorphism
Φ of the C-algebra OKL which preserves and induces the identity on the C-subalgebra
OKL0 ⊆ OKL arising from the quotient KL → KL

0. Observe (by thinking about the fact
that Φ necessarily arises as the morphism induced on functions by some automorphism of
the set of d-torsion points of E) that such an automorphism Φ is an isometry of OKL onto
itself (where we equip OKL with the natural L2-metric of the discussion above). Note,
moreover, that Φ induces an (isometric) automorphism of (L|η0) ⊗OKL0 OKL , hence (by
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conjugating by Ψ) an automorphism of Γ(E†
[d], T ∗η L)<d. By Lemma 3.2 (and the definition

of the “étale metric” || ∼ ||et on Γ(E†
[d], T ∗η L)<d), we thus obtain that:

Φ induces an automorphism of Γ(E†
[d], T ∗η L)<d which is an isometry with

respect to the || ∼ ||et-metric (cf. Chapter VIII, Theorem A, (4)).

This observation will be of central importance in the following discussion.

Now let Slog be any log scheme whose underlying scheme is connected, flat and of finite
type over Z, and whose log structure is defined by a divisor with normal crossings. Write
Int(Slog) ⊆ S for the interior of Slog, i.e., the open subscheme where the log structure is
trivial. Let

C log → Slog

be a log elliptic curve over Slog as in Chapter VIII, Theorem A, i.e.:

(1) the divisor at infinity D ⊆ S (i.e., the pull-back of the divisor at infinity
of (M1,0)Z via the classifying morphism S → (M1,0)Z) is a Cartier
divisor on S;

(2) étale locally on the completion of S along D, the pull-back of the Tate
parameter q to this completion admits a d-th root.

Here, we also make the technical assumption that if d is even, then the 2-torsion points of
E → S over the interior of SQ are all rational (i.e., defined over the interior of SQ). Let
us write (as usual)

dE → S

for the finite, flat group scheme of d-torsion points of E∞,S . Note that if we tensor with
Q, the resulting morphism (dE)Q → SQ is finite étale. Let us fix a geometric point s of
Int(Slog

Q ) valued in an algebraically closed field of characteristic 0, and write

ΠS
def= π1((Slog)Q, s)

for the algebraic fundamental group of Int(Slog
Q ). Also, let us fix a geometric point sd of

dE lying over s. Thus, it is clear that ΠS acts naturally on (dE)Q → SQ.

Now I claim that:
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The natural action of ΠS on (dE)Q → SQ extends (uniquely) to an
action on dE → S, except for possible poles annihilated by 4.

The uniqueness of the action follows immediately from the flatness of the morphisms
dE → S and S → Spec(Z). To prove existence, let us first observe that it suffices to
verify this claim for the “universal cases” S = (M1,0)Z (with the trivial log structure) and

S
def= Spec(Z[[q

1
d ]]), endowed with the log structure defined by the divisor V (q

1
d ). In these

cases, it follows from the theory of [KM] (cf., [KM], Chapter 5, especially Theorem 5.1.1)
that the closed subscheme Fd′ of dE corresponding to points of a given order d′ is regular,
hence normal. Thus, it follows immediately that the action of ΠS extends to the Fd′ .
Next, one checks that, for instance, at the prime 2, regular functions on the disjoint union
of the Fd′ regarded as rational functions on the original dE have poles annihilated by 4.
Indeed, in our situation, since the base S is regular of dimension 2, it suffices to verify this
assertion on the ordinary locus, where it essentially amounts to the corresponding assertion
for μ2N (as opposed to dE), where we write 2N for the maximal power of 2 dividing d.
But then OF2i

⋂
F2j

(where i < j ≤ N) is annihilated by ζ2i − ζ2j (where ζ?? is a primitive

??-th root of unity), which has the same 2-adic valuation as 22−j+1
. Thus, we see that the

structure sheaf of the intersection of F2i with the union of the other Fd′ ’s is annihilated
by 2 to the power

i · 2−i+1 + 2−(i+1)+1 + 2−(i+2)+1 + . . . + 2−N+1 ≤ i · 2−i+1 + 2−i+1 = (i + 1) · 2−i+1 ≤ 2

i.e., annihilated by 4 (which implies that the “rational function on μ2N ” which is 1 on
F2i and 0 on the other Fd′ ’s has poles annihilated by 4, as desired). This completes the
proof of the claim at the prime 2. At odd primes, the extendability of the action of ΠS

follows from the fact that since the universal bases in question (i.e., S = (M1,0)Z and

S
def= Spec(Z[[q

1
d ]])) are “absolutely unramified,” the fact that dE

σ (where σ ∈ ΠS) and
dE are “equal” over Q implies that their integral structures at the prime p are equal, as
well (cf. [Falt2], Theorems 2.6, 7.1).

Now let us assume that we are also given a torsion point

η ∈ E∞,S(S∞)

of order precisely m ∈ Z≥1 (where m does not divide d) which allows us to define a (Zhang-
theoretically metrized) line bundle L as in Chapter VIII, Theorem A. Note that KL → S
may be identified with dE → S. On the other hand, by the isomorphism in the discussion
at the end of Chapter V, §1 (where we take “α” to be e), we have a natural isomorphism:

L|
dE = L|KL ∼= (L|e0) ⊗O

K0
L
OKL
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Indeed, this follows immediately from the discussion at the end of Chapter V, §1, in the case
when m = 2d (which ensures that L is symmetric). But this case differs (cf. the definiton
of L in Chapter V, §1) from the case of an arbitrary m by a translation, plus a modification
of the integral structure at infinity by a d-invariant distribution. Translations are not a
problem (by “transport of structure”), while modifications of the integral structure at
infinity by a d-invariant distribution are not a problem since they are preserved by the
action of theta groups (cf. Chapter IV, Proposition 5.1). Thus, in particular, we see (by
the assumption concerning the rationality of the 2-torsion points!) that we get a natural
action (up to poles annihilated by 4) of ΠS on

(L|e0) ⊗O
K0
L
OKL

(where e is the identity section of C → S).

Thus, we obtain a natural action (up to poles annihilated by 4) of ΠS on

L|
dE = L|

dE
†
∞

i.e., on the range of the evaluation map of Chapter VIII, Theorem A:

Ξ{∞, et} : (fS)∗(L|
E
†
∞,[d]

)<d{∞, et} → (fS)∗(L|
(dE

†
∞)

)

By Chapter VIII, Theorem A, (2), it follows that the poles of the inverse morphism to
this evaluation map are contained in the divisor [η

⋂
(dE)]. Thus, we see that we get a

natural action of ΠS up to poles in the divisor [η
⋂

(dE)] + V (4) on

HDR
def= (fS)∗(L|

E
†
∞,[d]

)<d{∞, et}

(where V (4) is the zero locus of 4). Here by the expression “with poles in (a divisor),”
we mean that the action of any element of ΠS induces an endomorphism of HDR ⊗ Q,
which takes HDR into the subsheaf of HDR ⊗ Q given by meromorphic sections of HDR

which are integral everywhere, except for possible poles contained in the divisor stated.
Moreover, the Remark following Lemma 3.2 implies that if we put a metric on LC (where
LC

def= L ⊗Z C) whose curvature on the fibers of EC → SC is translation-invariant, then
the resulting “étale metric” || ∼ ||et (cf. Chapter VIII, Theorem A, (4)) is preserved by
the action of ΠS on HDR. We summarize this discussion as follows:
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Theorem 3.3. Let Slog be any connected log scheme, whose underlying scheme is flat
and of finite type over Z, and such that the log structure is defined by a divisor with normal
crossings. Fix positive integers m, d, where m does not divide d. Let

C log → Slog

be a log elliptic curve over Slog, and η ∈ E∞,S(S∞) be a torsion point of order precisely
m satisfying the hypotheses of Chapter VIII, Theorem A. Fix geometric points sd, s of dE
(the scheme of d-torsion points of E∞,S), Int(Slog)Q such that sd maps to s. Write

ΠS
def= π1((Slog)Q, s)

for the algebraic fundamental group of Int(Slog
Q ). Let us assume that if d is even, then

ΠS acts trivially on the 2-torsion points of the given log elliptic curve. Fix a metric on
LC

def= L ⊗Z C whose curvature on the fibers of EC → SC is translation-invariant. Then
there is a natural action of ΠS on the metrized vector bundle

HDR
def= (fS)∗(L|

E
†
∞,[d]

)<d{∞, et}

on S which is integral (over S) except for possible poles contained in the divisor

[η
⋂

(dE)] + V (4)

and preserves the “étale metric” || ∼ ||et (cf. Chapter VIII, Theorem A) determined by
the chosen metric on L.

Next, recall that the metrized vector bundle HDR is equipped with a natural filtration,
which we refer to as the Hodge filtration. The subquotients of this filtration admit natural
isomorphisms (cf. Chapter VIII, Theorem A, (3)):

(F j+1/F j)(HDR) ∼= 1
j!

· exp(−(aι)j) · (fS)∗(L|E∞,S
) ⊗OS

τ⊗j
E

for j = 0, . . . , d− 1. Here, the “exp(−(aι)j)” are powers of the q-parameter, as in Chapter
VIII, Theorem A, (3), i.e.,

exp((aι)j) = q≈
j2

8d

Let us write
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Filt(HDR)

for the flag variety over S of filtrations of HDR which are of the same “type” (i.e., each “F j”
has the same rank as F j(HDR)) as the Hodge filtration. (Thus, each fiber of Filt(HDR) → S
is noncanonically isomorphic to the flag variety of flags F 1(V ) ⊆ F 2(V ) ⊆ . . . F d−1(V ) ⊆
F d(V ) = V in a d2-dimensional vector space V for which dim(F j(V )) = j · d.) Note that
if we apply the action of ΠS on HDR to the Hodge filtration, we thus obtain a morphism

κarith
E : ΠS → Filt(HDR)(S)

(where the “(S)” denotes the “S-valued points”). Note that

The integrality statements of Theorem 3.3 (at both the finite and infinite
primes) imply that the image of each element γ ∈ ΠS under κarith

E is a
filtration {γ(F j(HDR)} such that (up to denominators contained in the
divisor [η

⋂
(dE)]+V (4)) each γ(F j(HDR)} is globally isomorphic (i.e.,

isomorphic as a vector bundle on S, equipped with a metric over SC) to
F j(HDR).

Note, further that the construction of κarith
E is entirely analogous to the construction of the

“group-theoretic Kodaira-Spencer morphism”

κfunc
SL2

: SL2(R) → Filt(HolomPoly(Ẽ†))

of §1, as well as to the morphism

κarith,p
R : ΓR → τ⊗2

E (1)
R̂Qp

of §2.

Definition 3.4. We shall refer to

κarith
E : ΠS → Filt(HDR)(S)

as the arithmetic Kodaira-Spencer morphism associated to E → S.

Example 3.5. Suppose, for instance, that

S = Spec(OK)
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where OK is the ring of integers of a number field K (i.e., [K : Q] < ∞). Suppose,
moreover, that the log structure of Slog is defined by the divisor Dred ⊆ S (where D is the
“divisor at infinity” associated to C log → Slog). In this example, let us assume that

d ≥ 12

and write d2
def= 2ord2(d) (i.e., d2 divides d and d/d2 is odd). Here, let us take m

def= 2d2,
n = 4d2. Suppose that the elliptic curve EK over K is sufficiently close to infinity at all
the archimedean primes, in the following sense:

For each embedding σ of K into C, the resulting elliptic curve Eσ (over
C) can be written as Gm/qZ, where q = exp(2πiτ) satisfies:

Im(τ) ≥ 200{log2(d) + 4d2 · log(d) + 4d2 · log(4d2)}

(Thus, if d >> d2 (for instance, if d is odd, in which case d2 = 1), then the lower bound
on Im(τ) goes roughly as log2(d).) Note that it is not difficult, for a fixed d, to construct
lots of examples of EK satisfying this condition at the archimedean primes.

Now it follows from Chapter VIII, Theorem A, (4), (C), that:

e−33d · || ∼ ||qCG ≤ 1
4d2

· e−32d · || ∼ ||qCG ≤ || ∼ ||et ≤ e4d · || ∼ ||qCG

Thus, in particular, it follows that if we include both the poles at the finite primes (cf.
Theorem 3.3; the first Remark following Chapter VI, Theorem 4.1) as well as the poles at
the archimedean primes, then:

The global divisor of poles of the action on HDR of an element of ΠS

has Arakelov-theoretic degree (cf. Chapter I, §1) ≤ 38d · [K : Q], and
is concentrated at the archimedean primes, and the primes that divide
m = 2d2.

(where the “38” is the sum of the “4” and the “33” appearing in the inequalities above,
plus “1” more, to take care of the contribution from the finite primes). Put another way,
the action of each element of ΠS maps HDR, whose subquotients are given by

1
j!

· exp(−(aι)j) · τ⊗j
E

(tensored with a “common factor” of (fS)∗(L|E∞,S
)) to a module whose subquotients are

given by
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1
j!

· exp(−(aι)j) · τ⊗j
E · (poles)

(tensored with a “common factor” of (fS)∗(L|E∞,S
)) — where the “(poles)” admit bounds

as described in the italicized caption above — in a fashion which is integral at all the
primes (both archimedean and non-archimedean) of the number field K.

Remark. It is thus tempting, relative to the analogue with the Kodaira-Spencer morphism
in the geometric case, to try to apply this theory to obtain bounds on the height of an
elliptic curve over a number field, as conjectured by Szpiro and Vojta (cf., e.g., [Lang],
[Vojta]). There are, unfortunately, a number of technical difficulties here. Perhaps the
most obvious is the factors of “exp(−(aι)j)” that appear in the subquotients – we refer to
these factors as Gaussian poles (since they grow like a Gaussian distribution) – since these
factors distort one’s ability to compute degrees as one would like. That is to say, by analogy
to the geometric case, ideally one wishes for only the factor “τ⊗j

E · (poles)” to appear in
these subquotients. Relative to this point of view, poles of the order “Cj ≈ Cd” (as j → d)
are not a substantial problem (at least if one concentrates on the subquotients where j is
close to d), since this just adds an extra constant term to the Arakelov-theoretic degree of
τE . From this point of view, one might a priori think that the factors of 1

j! are also a cause
for concern (since they are not of the order Cd). Note that this is why, in the theory of
Chapter VIII – cf. especially the statement concerning analytic torsion and the product
formula at the end of Chapter VIII, Theorem A – we were so concerned with making sure
that the “denominators” that occurred in the theory at the archimedean primes were of
the order “Cd” (i.e., even when one takes the factors of 1

j! mentioned above into account).

Another technical difficulty (by comparison to the geometric case) is the general non-
linearity that appears – e.g., of ΠS , by comparison to the tangent bundle in the geometric
case; of the action of ΠS on HDR, which does not appear to arise from, say, taking sym-
metric powers of the some action on F 2(HDR), as in the geometric case. Perhaps this
nonlinearity is not surprising in view of the general phenomenon that Arakelov theory
tends to give rise to nonlinear objects which are analogous to linear objects in the classical
geometric theory (for instance, the global integral sections of a line bundle in Arakelov
theory are not, in general, closed under addition).

Yet another technical difficulty is the fact that in Example 3.5 above, we needed to
assume that EK is rather close to infinity at the archimedean primes.

It is the hope of the author that these technical difficulties can be overcome in a future
paper.

367



Appendix:

Formal Uniformization of Smooth Abelian Group Schemes

In this Appendix, we review various well-known facts concerning the “exponential
map” of an abelian group scheme.

Let S be a noetherian scheme. Let

f : G → S

be a smooth, abelian group scheme with identity section e : S ↪→ G. Observe that the
morphism

G ×S G → G ×S G

defined on T -valued points (where T is an S-scheme) g, h ∈ G(T ) by (g, h) �→ (gh, g)
induces an isomorphism of the diagonal embedding G ↪→ G ×S G with the embedding
G ↪→ G ×S G given by g �→ (g, e) (where e is the identity element). Since the sheaf of
differentials ΩG/S on G is the conormal bundle of the former embedding, we thus obtain
a natural isomorphism

f∗e∗ΩG/S
∼= ΩG/S

Write

Ω def= e∗ΩG/S

Thus, Ω is a locally free sheaf on S, and the above isomorphism induces a natural mor-
phism Ω → f∗ΩG/S . The differentials in the image of this morphism are called invariant
differentials on G.

Now let

A

be the “pro-algebra” (i.e., inverse limit of finite locally free OS-algebras) on S given by
taking the completed PD-envelope in G of e (cf., e.g., [BO] for more details). Thus, A is
equipped with a natural augmentation A → OS (“evaluation at e”) whose kernel I is a
PD-ideal of A. If n is a positive integer, let us write I [n] for the nth divided power of I.
Thus,

An
def= A/I [n]
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is a finite locally free OS-algebra, and I [n]/I [n+1] is a finite locally free OS-module. More-
over, A is complete with respect to the filtration

. . . ⊆ I [n] ⊆ . . . ⊆ I [2] ⊆ I

Intuitively speaking, if x1, . . . , xr are a complete set of local parameters on G (over S) at
e, then A may be described as the ring of formal power series in divided powers of the xi

with coefficients in OS . Moreover, note that A may be regarded as also being equipped
with an OG-algebra structure in the sense that one has a coherent system of natural
morphisms Spec(An) → G (“Taylor expansion at e to order n of functions on G”). Thus,
if, for instance, F is a locally free coherent sheaf on G, it makes sense to write A⊗OG

F .
Moreover, A ⊗OG

F will be a locally free A-module of finite rank. In the following, we
shall denote A⊗OG

∧i ΩG/S by Ωi
A.

Sometimes, we shall want to consider the completed PD-envelope of G at an S-valued
point x ∈ G(S) of G which is not equal to e. Note, however, that translation by x induces
an automorphism

Tx : G → G

which maps the completed PD-envelope of G at e (i.e., A) isomorphically onto the com-
pleted PD-envelope of G at x. Thus, in the following, we shall identify these two PD-
envelopes by means of this isomorphism.

Now observe that by formally differentiating power series, we obtain a de Rham com-
plex of “PD-functions”

A d−→ Ω1
A

d−→ Ω2
A

d−→ . . .

Composing the morphism Ω → f∗ΩG/S constructed above with restriction to Ω1
A then

gives us a morphism

ι : Ω → Ω1
A

Now we have the following well-known result:

Lemma A.1. Suppose that the map OS → OS given by multplication by 2 is injective.
Then the composite of ι with the exterior derivative d is zero.

Proof. Since G is abelian, it follows that the automorphism ν : G → G given by inversion
is a group homomorphism. Note that ν induces natural actions ν∗ on Ω and on the Ωi

A.
Indeed, ν∗ acts as −1 on Ω and as (−1)i on Ωi

A. Since d and ι are natural, ν∗ acts on
elements in the image of d ◦ ι by multiplication by −1. On the other hand, since these
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elements are sections of Ω2
A, ν∗ must act on these elements as the identity. Thus, it follows

that Im(d ◦ ι) is annihilated by multiplication by 2. On the other hand, since Ω2
A is an

inverse limit of locally free coherent OS-modules, it follows from the assumption of the
Lemma that Im(d ◦ ι) = 0, as desired. ©

Let us assume for the rest of this Appendix that the assumption of Lemma A.1 is
in force. Thus, the differentials in the image of ι are closed, and hence, by formal in-
tegration, exact (see, e.g., [BO] for a discussion of the Poincaré Lemma in the context
of PD-functions). Moreover, it is clear (from the Poincaré Lemma) that d induces an
isomorphism:

d : I (⊆ A) ∼= {exact differentials of Ω1
A}

Thus, we see that ι lifts to a natural morphism

λ : Ω ↪→ I

whose composite with the projection to I/I [2] = Ω is the identity.

Definition A.2. Suppose that S is a noetherian scheme such that multiplication by 2
on OS is injective. Let G → S be a smooth, abelian group scheme over S. Then we shall
refer to the natural morphism

λ : Ω ↪→ I

just constructed as the logarithmic uniformization (morphism) of G.

Proposition A.3. The morphism λ : Ω ↪→ I is functorial (in the obvious sense) with
respect to homomorphisms G → H of smooth, abelian group schemes over S.

Proof. Indeed, λ is determined by its composite with the exterior differential operator d.
Thus, it suffices to observe that the morphism Ω → f∗ΩG/S constructed above is functorial
in G, but this is clear from its construction. ©

Example A.4. Suppose that

G = (Gm)S

i.e., the multiplicative group scheme over S. One may think of G as the spectrum of
OS [U,U−1], where U is an indeterminate. Then the image of the natural morphism
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Ω → f∗ΩG/S constructed above is generated by dU/U . Moreover, λ(dU/U) is the nat-
ural logarithm

log(U) def= −
∞∑

i=1

(1 − U)i

i

Example A.5. Suppose that

G = (Ga)S

i.e., the additive group scheme over S. One may think of G as the spectrum of OS [T ],
where T is an indeterminate, and T = 0 is the section “e.” Then the image of the natural
morphism Ω → f∗ΩG/S constructed above is generated by dT . Moreover, λ(dT ) is just
the function T .

Finally, before proceeding, we recall the analogue of the construction above at the
infinite prime. Thus, let C denote the field of complex numbers. Let G be an abelian
complex Lie group. Thus, G is “an abelian group object” in the category of complex
(i.e., holomorphic) manifolds. Let Θ (respectively, Ω) denote the tangent (respectively,
cotangent) space to G at the origin. Thus, Θ and Ω are finite-dimensional complex vector
spaces which are dual to one another.

Now one knows from the elementary theory of complex Lie groups (see, e.g., [Vara])
that there exists a unique holomorphic morphism, called the exponential map

expG : Θ → G

compatible with the additive structures of Θ and G and whose derivative at the origin is
the identity map Θ → Θ. Let us denote by Ahol the local ring of holomorphic functions
in a neighborhood of the origin of G. Thus, Ahol is equipped with an ideal

Ihol ⊆ Ahol

of functions vanishing at the origin of G. Since expG induces an isomorphism between the
local rings of holomorphic functions in a neighbhorhood of the origin of Θ and G, we thus
see that the local coordinate functions (i.e., elements of Ω) on Θ define elements of Ihol,
i.e., we have a natural morphism

λhol : Ω ↪→ Ihol

which is the holomorphic analogue of the algebraic λ constructed above in the following
sense: Suppose G is the complex Lie group defined by some abelian group scheme G over
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C. Then both Ahol and A embed naturally in the ring Afor of formal functions at the
origin of G (i.e., the ring obtained by completing G at e). Write Ifor ⊆ Afor for the ideal of
functions vanishing at the origin. Thus, since both Ihol and I may be regarded as subsets
of Ifor, it follows that both λhol and λ define natural morphisms Ω ↪→ Ifor.

Proposition A.6. These two morphisms Ω ↪→ Ifor coincide.

Proof. Indeed, it is clear (from the theory of the exponential map) that the exterior
derivative d of the image of λhol gives rise to (the power series expansions at the origin of)
invariant differentials on G. Since d is injective on Ifor, this completes the proof. ©
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Math. de France (1994).

373


